Every day we communicate using complex linguistic and musical systems, yet these modern systems are the product of a much more ancient relationship with sound. When we speak, we communicate not only with the words we choose, but also with the patterns of sound we create and the movements that create them. From the natural rhythms of speech, to the precise timing characteristics of a consonant, these patterns guide our daily communication. By examining the principles of information processing that are common to speech and music, we peel back the layers to reveal the biological foundations of human communication through sound. Further, we consider how the brain's response to sound is shaped by experience, such as musical expertise, and implications for the treatment of communication disorders.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abrams DA, Nicol T, Zecker S, Kraus N. 2009. Abnormal cortical processing of the syllable rate of speech in poor readers. J. Neurosci. 29:7686–93 [Google Scholar]
  2. Abrams DA, Nicol T, Zecker SG, Kraus N. 2006. Auditory brainstem timing predicts cerebral asymmetry for speech. J. Neurosci. 26:11131–37 [Google Scholar]
  3. Ahissar M, Nahum M, Nelken I, Hochstein S. 2009. Reverse hierarchies and sensory learning. Philos. Trans. R. Soc. B 364:285–99 [Google Scholar]
  4. Andreou L-V, Kashino M, Chait M. 2011. The role of temporal regularity in auditory segregation. Hear. Res. 280:228–35 [Google Scholar]
  5. Antunes FM, Nelken I, Covey E, Malmierca MS. 2010. Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLOS ONE 5:e14071 [Google Scholar]
  6. Ashley R. 2002. Do[n't] change a hair for me: the art of jazz rubato. Music Percept. 19:311–32 [Google Scholar]
  7. Auer P, Couper-Kuhlen E, Müller F. 1999. Language in Time: The Rhythm and Tempo of Spoken Interaction Oxford, UK: Oxford Univ. Press
  8. Bajo VM, Nodal FR, Moore DR, King AJ. 2009. The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat. Neurosci. 13:253–60 [Google Scholar]
  9. Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. 2009. Reading and subcortical auditory function. Cereb. Cortex 19:2699–707 [Google Scholar]
  10. Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A. et al. 1998. Lateralization of speech and auditory temporal processing. J. Cogn. Neurosci. 10:536–40 [Google Scholar]
  11. Berkowitz AL. 2010. The Improvising Mind: Cognition and Creativity in the Musical Moment New York: Oxford Univ. Press
  12. Bhide A, Power A, Goswami U. 2013. A rhythmic musical intervention for poor readers: a comparison of efficacy with a letter-based intervention. Mind Brain Educ. 7:113–23 [Google Scholar]
  13. Bidelman GM, Gandour JT, Krishnan A. 2011. Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. J. Cogn. Neurosci. 23:425–34 [Google Scholar]
  14. Brown S, Martinez MJ, Hodges DA, Fox PT, Parsons LM. 2004. The song system of the human brain. Cogn. Brain Res. 20:363–75 [Google Scholar]
  15. Cason N, Schön D. 2012. Rhythmic priming enhances the phonological processing of speech. Neuropsychologia 50:2652–58 [Google Scholar]
  16. Casseday JH, Fremouw T, Covey E. 2002. The inferior colliculus: a hub for the central auditory system. Integrative Functions in the Mammalian Auditory Pathway D Oertel, AN Popper, RR Fay 238–318 New York: Springer [Google Scholar]
  17. Censullo M, Lester B, Hoffman J. 1985. Rhythmic patterning in mother-newborn interaction. Nurs. Res. 34:342–46 [Google Scholar]
  18. Chen Y, Repp BH, Patel AD. 2002. Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions. Hum. Mov. Sci. 21:515–32 [Google Scholar]
  19. Cirelli LK, Wan SJ, Trainor LJ. 2014. Fourteen-month-old infants use interpersonal synchrony as a cue to direct helpfulness. Philos. Trans. R. Soc. B 36920130400 [Google Scholar]
  20. Conway CM, Pisoni DB. 2008. Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Ann. N. Y. Acad. Sci. 1145:113–31 [Google Scholar]
  21. Conway CM, Pisoni DB, Kronenberger WG. 2009. The importance of sound for cognitive sequencing abilities: the auditory scaffolding hypothesis. Curr. Dir. Psychol. Sci. 18:275–79 [Google Scholar]
  22. Cook P, Rouse A, Wilson M, Reichmuth C. 2013. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic. J. Comp. Psychol. 127:412–27 [Google Scholar]
  23. Corriveau KH, Goswami U. 2009. Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat. Cortex 45:119–30 [Google Scholar]
  24. Cummins F. 2013. Joint speech: the missing link between speech and music?. Percepta: J. Musical Cogn. 1:17–32 [Google Scholar]
  25. Cunillera T, Toro JM, Sebastián-Gallés N, Rodríguez-Fornells A. 2006. The effects of stress and statistical cues on continuous speech segmentation: an event-related brain potential study. Brain Res. 1123:168–78 [Google Scholar]
  26. Cutler A, Butterfield S. 1992. Rhythmic cues to speech segmentation: evidence from juncture misperception. J. Mem. Lang. 31:218–36 [Google Scholar]
  27. Dean I, Harper NS, McAlpine D. 2005. Neural population coding of sound level adapts to stimulus statistics. Nat. Neurosci. 8:1684–89 [Google Scholar]
  28. Dean I, Robinson BL, Harper NS, McAlpine D. 2008. Rapid neural adaptation to sound level statistics. J. Neurosci. 28:6430–38 [Google Scholar]
  29. Ettlinger M, Margulis EH, Wong PC. 2011. Implicit memory in music and language. Front. Psychol. 2:211 [Google Scholar]
  30. Facoetti A, Trussardi AN, Ruffino M, Lorusso ML, Cattaneo C. et al. 2010. Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. J. Cogn. Neurosci. 22:1011–25 [Google Scholar]
  31. Fisher SE, Scharff C. 2009. FOXP2 as a molecular window into speech and language. Trends Genet. 25:166–77 [Google Scholar]
  32. François C, Chobert J, Besson M, Schön D. 2013. Music training for the development of speech segmentation. Cereb. Cortex 23:2038–43 [Google Scholar]
  33. François C, Schön D. 2011. Musical expertise boosts implicit learning of both musical and linguistic structures. Cereb. Cortex 21:2357–65 [Google Scholar]
  34. Giraud A-L, Poeppel D. 2012. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15:511–17 [Google Scholar]
  35. Goswami U. 2011. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 15:3–10 [Google Scholar]
  36. Grahn JA. 2012. Neural mechanisms of rhythm perception: current findings and future perspectives. Top. Cogn. Sci. 4:585–606 [Google Scholar]
  37. Graybiel AM. 2005. The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15:638–44 [Google Scholar]
  38. Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD. 2001. Encoding of the temporal regularity of sound in the human brainstem. Nat. Neurosci. 4:633–37 [Google Scholar]
  39. Grube M, Lee K-H, Griffiths TD, Barker AT, Woodruff PW. 2010. Frontiers: Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front. Psychol. 1:171 [Google Scholar]
  40. Hannon EE, Trehub SE. 2005. Metrical categories in infancy and adulthood. Psychol. Sci. 16:48–55 [Google Scholar]
  41. Hauser MD, Newport EL, Aslin RN. 2001. Segmentation of the speech stream in a non-human primate: statistical learning in cotton-top tamarins. Cognition 78:B53–64 [Google Scholar]
  42. Heim S, Friedman JT, Keil A, Benasich AA. 2011. Reduced sensory oscillatory activity during rapid auditory processing as a correlate of language-learning impairment. J. Neurolinguist. 24:538–55 [Google Scholar]
  43. Hornickel J, Kraus N. 2013. Unstable representation of sound: a biological marker of dyslexia. J. Neurosci. 33:3500–4 [Google Scholar]
  44. Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. 2009. Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. PNAS 106:13022–27 [Google Scholar]
  45. Hove MJ, Iversen JR, Zhang A, Repp BH. 2012. Synchronization with competing visual and auditory rhythms: Bouncing ball meets metronome. Psychol. Res. 77:388–98 [Google Scholar]
  46. Hove MJ, Risen JL. 2009. It's all in the timing: Interpersonal synchrony increases affiliation. Soc. Cogn. 27:949–60 [Google Scholar]
  47. Huron DB. 2006. Sweet Anticipation: Music and the Psychology of Expectation Cambridge, MA: MIT Press
  48. Huss M, Verney JP, Fosker T, Mead N, Goswami U. 2010. Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex 47:674–89 [Google Scholar]
  49. Iversen JR, Repp BH, Patel AD. 2009. Top-down control of rhythm perception modulates early auditory responses. Ann. N. Y. Acad. Sci. 1169:58–73 [Google Scholar]
  50. Johnson EK, Jusczyk PW. 2001. Word segmentation by 8-month-olds: when speech cues count more than statistics. J. Mem. Lang. 44:548–67 [Google Scholar]
  51. Kirkham NZ, Slemmer JA, Johnson SP. 2002. Visual statistical learning in infancy: evidence for a domain general learning mechanism. Cognition 83:B35–42 [Google Scholar]
  52. Knutson B, Adams CM, Fong GW, Hommer D. 2001. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21:RC159 [Google Scholar]
  53. Kolers PA, Brewster JM. 1985. Rhythms and responses. J. Exp. Psychol.: Hum. Percept. Perform. 11:150–67 [Google Scholar]
  54. Kotz SA, Schwartze M, Schmidt-Kassow M. 2009. Non-motor basal ganglia functions: a review and proposal for a model of sensory predictability in auditory language perception. Cortex 45:982–90 [Google Scholar]
  55. Kraus N. 2011. Listening in on the listening brain. Phys. Today 64:40–45 [Google Scholar]
  56. Kraus N, Chandrasekaran B. 2010. Music training for the development of auditory skills. Nat. Rev. Neurosci. 11:599–605 [Google Scholar]
  57. Kraus N, Hornickel J. 2012. Meaningful engagement with sound for strengthening communication skills. Auditory Processing Disorders: Assessment, Management and Treatment D Geffner, D Ross-Swain 693–717 San Diego: Plural [Google Scholar]
  58. Kraus N, Nicol T. 2014. The cognitive auditory system: the role of learning in shaping the biology of the auditory system. Perspectives on Auditory Research AN Popper, RR Fay 299–319 New York: Springer Sci.+Bus. Media [Google Scholar]
  59. Kraus N, Slater J, Thompson EC, Hornickel J, Strait DL. et al. 2014. Music enrichment programs improve the neural encoding of speech in at-risk children. J. Neurosci. 34:11913–18 [Google Scholar]
  60. Kraus N, Strait DL. 2015. Emergence of biological markers of musicianship with school-based music instruction. Ann. N. Y. Acad. Sci. 1337:163–69 [Google Scholar]
  61. Kraus N, Strait DL, Parbery-Clark A. 2012. Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory. Ann. N. Y. Acad. Sci. 1252:100–7 [Google Scholar]
  62. Kraus N, White-Schwoch T. 2015. Unraveling the biology of auditory learning: a cognitive-sensorimotor-reward framework. Trends Cogn. Sci. In press
  63. Krishnan A, Xu Y, Gandour J, Cariani P. 2005. Encoding of pitch in the human brainstem is sensitive to language experience. Brain Res. Cogn. Brain Res. 25:161–68 [Google Scholar]
  64. Krizman J, Marian V, Shook A, Skoe E, Kraus N. 2012. Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. PNAS 109:7877–81 [Google Scholar]
  65. Kvale MN, Schreiner CE. 2004. Short-term adaptation of auditory receptive fields to dynamic stimuli. J. Neurophysiol. 91:604–12 [Google Scholar]
  66. Large EW, Jones MR. 1999. The dynamics of attending: how people track time-varying events. Psychol. Rev. 106:119–59 [Google Scholar]
  67. Large EW, Snyder JS. 2009. Pulse and meter as neural resonance. Ann. N. Y. Acad. Sci. 1169:46–57 [Google Scholar]
  68. Launay J, Dean RT, Bailes F. 2013. Synchronization can influence trust following virtual interaction. Exp. Psychol. 60:53–63 [Google Scholar]
  69. Madison G, Merker B. 2004. Human sensorimotor tracking of continuous subliminal deviations from isochrony. Neurosci. Lett. 370:69–73 [Google Scholar]
  70. Malmierca MS, Cristaudo S, Pérez-González D, Covey E. 2009. Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J. Neurosci. 29:5483–93 [Google Scholar]
  71. Mauk MD, Buonomano DV. 2004. The neural basis of temporal processing. Annu. Rev. Neurosci. 27:307–40 [Google Scholar]
  72. McGurk H, MacDonald J. 1976. Hearing lips and seeing voices. Nature 264:746–48 [Google Scholar]
  73. Merchant H, Grahn J, Trainor L, Rohrmeier M, Fitch WT. 2015. Finding the beat: a neural perspective across humans and non-human primates. Philos. Trans. R. Soc. Lond. B 370:20140093 [Google Scholar]
  74. Merchant H, Honing H. 2013. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Front. Neurosci. 7:274 [Google Scholar]
  75. Morillon B, Schroeder CE, Wyart V. 2014. Motor contributions to the temporal precision of auditory attention. Nat. Commun. 5:5255 [Google Scholar]
  76. Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H. 2006. Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci. 9:1057–63 [Google Scholar]
  77. Musacchia G, Strait D, Kraus N. 2008. Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hear. Res. 241:34–42 [Google Scholar]
  78. Näätänen R. 1995. The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear. 16:6–18 [Google Scholar]
  79. Nagarajan S, Mahncke H, Salz T, Tallal P, Roberts T, Merzenich MM. 1999. Cortical auditory signal processing in poor readers. PNAS 96:6483–88 [Google Scholar]
  80. Nakatani LH, Schaffer JA. 1978. Hearing “words” without words: prosodic cues for word perception. J. Acoust. Soc. Am. 63:234–45 [Google Scholar]
  81. Nelken I. 2008. Processing of complex sounds in the auditory system. Curr. Opin. Neurobiol. 18:413–17 [Google Scholar]
  82. Nelken I, Ulanovsky N. 2007. Mismatch negativity and stimulus-specific adaptation in animal models. J. Psychophysiol. 21:214–23 [Google Scholar]
  83. Nozaradan S. 2014. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philos. Trans. R. Soc. Lond. B 369:20130393 [Google Scholar]
  84. Nozaradan S, Peretz I, Mouraux A. 2012. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J. Neurosci. 32:17572–81 [Google Scholar]
  85. Overy K. 2000. Dyslexia, temporal processing and music: the potential of music as an early learning aid for dyslexic children. Psychol. Music 28:218–29 [Google Scholar]
  86. Overy K. 2003. Dyslexia and music. From timing deficits to musical intervention. Ann. N.Y. Acad. Sci. 999:497–505 [Google Scholar]
  87. Overy K, Nicolson RI, Fawcett AJ, Clarke EF. 2003. Dyslexia and music: measuring musical timing skills. Dyslexia 9:18–36 [Google Scholar]
  88. Palmer C. 1997. Music performance. Annu. Rev. Psychol. 48:115–38 [Google Scholar]
  89. Parbery-Clark A, Anderson S, Hittner E, Kraus N. 2012a. Musical experience offsets age-related delays in neural timing. Neurobiol. Aging 33:1483.e1–4 [Google Scholar]
  90. Parbery-Clark A, Anderson S, Hittner E, Kraus N. 2012b. Musical experience strengthens the neural representation of sounds important for communication in middle-aged adults. Front. Aging Neurosci. 4:30 [Google Scholar]
  91. Parbery-Clark A, Skoe E, Kraus N. 2009. Musical experience limits the degradative effects of background noise on the neural processing of sound. J. Neurosci. 29:14100–7 [Google Scholar]
  92. Parbery-Clark A, Strait D, Kraus N. 2011. Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia 49:3338–45 [Google Scholar]
  93. Parbery-Clark A, Tierney A, Strait DL, Kraus N. 2012c. Musicians have fine-tuned neural distinction of speech syllables. Neuroscience 219:111–19 [Google Scholar]
  94. Patel AD. 2010. Music, Language, and the Brain New York: Oxford Univ. Press
  95. Patel AD. 2011. Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front. Psychol. 2:142 [Google Scholar]
  96. Patel AD, Iversen JR. 2014. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Front. Syst. Neurosci 8:57 [Google Scholar]
  97. Patel AD, Iversen JR, Bregman MR, Schulz I. 2009. Studying synchronization to a musical beat in nonhuman animals. Ann. N. Y. Acad. Sci. 1169:459–69 [Google Scholar]
  98. Patel AD, Iversen JR, Chen Y, Repp BH. 2005. The influence of metricality and modality on synchronization with a beat. Exp. Brain Res. 163:226–38 [Google Scholar]
  99. Phillips-Silver J, Aktipis CA, Bryant GA. 2010. The ecology of entrainment: foundations of coordinated rhythmic movement. Music Percept. 28:3–14 [Google Scholar]
  100. Phillips-Silver J, Trainor LJ. 2005. Feeling the beat: Movement influences infant rhythm perception. Science 308:1430 [Google Scholar]
  101. Phillips-Silver J, Trainor LJ. 2007. Hearing what the body feels: auditory encoding of rhythmic movement. Cognition 105:533–46 [Google Scholar]
  102. Pitt MA, Samuel AG. 1990. The use of rhythm in attending to speech. J. Exp. Psychol.: Hum. Percept. Perform. 16:564–73 [Google Scholar]
  103. Poeppel D. 2003. The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time.”. Speech Commun. 41:245–55 [Google Scholar]
  104. Quene H, Port RF. 2005. Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica 62:1–13 [Google Scholar]
  105. Rankin SK, Large EW, Fink PW. 2009. Fractal tempo fluctuation and pulse prediction. Music Percept. 26:401–13 [Google Scholar]
  106. Repp BH. 1992. Diversity and commonality in music performance: an analysis of timing microstructure in Schumann's “Traumerei.”. J. Acoust. Soc. Am. 92:2546–68 [Google Scholar]
  107. Repp BH. 2000. Compensation for subliminal timing perturbations in perceptual-motor synchronization. Psychol. Res. 63:106–28 [Google Scholar]
  108. Repp BH. 2003. Rate limits in sensorimotor synchronization with auditory and visual sequences: the synchronization threshold and the benefits and costs of interval subdivision. J. Mot. Behav. 35:355–70 [Google Scholar]
  109. Roncaglia-Denissen MP, Schmidt-Kassow M, Kotz SA. 2013. Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence. PLOS ONE 8:e56000 [Google Scholar]
  110. Saffran J, Hauser M, Seibel R, Kapfhamer J, Tsao F, Cushman F. 2008. Grammatical pattern learning by human infants and cotton-top tamarin monkeys. Cognition 107:479–500 [Google Scholar]
  111. Saffran JR, Aslin RN, Newport EL. 1996. Statistical learning by 8-month-old infants. Science 274:1926–28 [Google Scholar]
  112. Schack B, Vath N, Petsche H, Geissler H-G, Möller E. 2002. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 44:143–63 [Google Scholar]
  113. Scherer K. 2013. The evolutionary origin of multimodal synchronization in emotional expression. J. Anthropol. Sci. 91:1–16 [Google Scholar]
  114. Schmidt-Kassow M, Kotz SA. 2008. Entrainment of syntactic processing? ERP-responses to predictable time intervals during syntactic reanalysis. Brain Res. 1226:144–55 [Google Scholar]
  115. Schubotz RI. 2007. Prediction of external events with our motor system: towards a new framework. Trends Cogn. Sci. 11:211–18 [Google Scholar]
  116. Schutz M, Lipscomb S. 2007. Hearing gestures, seeing music: Vision influences perceived tone duration. Perception 36:888–97 [Google Scholar]
  117. Scott SK, Johnsrude IS. 2003. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 26:100–7 [Google Scholar]
  118. Sengupta R, Nasir SM. 2015. Redistribution of neural phase coherence reflects establishment of feedforward map in speech motor adaptation. J. Neurophysiol. 113:2471–79 [Google Scholar]
  119. Shamma SA, Elhilali M, Micheyl C. 2011. Temporal coherence and attention in auditory scene analysis. Trends Neurosci. 34:114–23 [Google Scholar]
  120. Shook A, Marian V, Bartolotti J, Schroeder SR. 2013. Musical experience influences statistical learning of a novel language. Am. J. Psychol. 126:95–104 [Google Scholar]
  121. Skoe E, Kraus N. 2010. Auditory brain stem response to complex sounds: a tutorial. Ear Hear. 31:302–24 [Google Scholar]
  122. Skoe E, Kraus N. 2012. A little goes a long way: how the adult brain is shaped by musical training in childhood. J. Neurosci. 32:11507–10 [Google Scholar]
  123. Skoe E, Kraus N. 2013. Musical training heightens auditory brainstem function during sensitive periods in development. Front. Psychol. 4:622 [Google Scholar]
  124. Skoe E, Krizman J, Kraus N. 2013a. The impoverished brain: disparities in maternal education affect the neural response to sound. J. Neurosci. 33:17221–31 [Google Scholar]
  125. Skoe E, Krizman J, Spitzer E, Kraus N. 2013b. The auditory brainstem is a barometer of rapid auditory learning. Neuroscience 243:104–14 [Google Scholar]
  126. Slater J, Kraus N. 2015. The role of rhythm in perceiving speech in noise: a comparison of percussionists, vocalists and non-musicians. Cogn. Process In press
  127. Slater J, Skoe E, Strait DL, O'Connell S, Thompson E, Kraus N. 2015. Music training improves speech-in-noise perception: longitudinal evidence from a community-based music program. Behav. Brain Res. 291:244–52 [Google Scholar]
  128. Smith MR, Cutler A, Butterfield S, Nimmo-Smith I. 1989. The perception of rhythm and word boundaries in noise-masked speech. J. Speech Hear. Res. 32:912–20 [Google Scholar]
  129. Strait DL, Chan K, Ashley R, Kraus N. 2012. Specialization among the specialized: Auditory brainstem function is tuned in to timbre. Cortex 48:360–62 [Google Scholar]
  130. Strait DL, Kraus N. 2011. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise. Front. Psychol. 2:113 [Google Scholar]
  131. Strait DL, Kraus N. 2013. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear. Res. 308:109–21 [Google Scholar]
  132. Strait DL, O'Connell S, Parbery-Clark A, Kraus N. 2013. Musicians' enhanced neural differentiation of speech sounds arises early in life: developmental evidence from ages 3 to 30. Cereb. Cortex 24:2512–21 [Google Scholar]
  133. Suga N, Ma X. 2003. Multiparametric corticofugal modulation and plasticity in the auditory system. Nat. Rev. Neurosci. 4:783–94 [Google Scholar]
  134. Swaminathan J, Mason CR, Streeter TM, Best V, Kidd G Jr., Patel AD. 2015. Musical training, individual differences and the cocktail party problem. Sci. Rep. 5:11628 [Google Scholar]
  135. Tallal P, Gaab N. 2006. Dynamic auditory processing, musical experience and language development. Trends Neurosci. 29:382–90 [Google Scholar]
  136. Tarr B, Launay J, Dunbar RI. 2014. Music and social bonding: “self-other” merging and neurohormonal mechanisms. Front. Psychol. 5:1096 [Google Scholar]
  137. Teinonen T, Fellman V, Näätänen R, Alku P, Huotilainen M. 2009. Statistical language learning in neonates revealed by event-related brain potentials. BMC Neurosci. 10:21 [Google Scholar]
  138. Thaut MH, Kenyon GP. 2003. Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization. Hum. Mov. Sci. 22:321–38 [Google Scholar]
  139. Thomson JM, Goswami U. 2008. Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. J. Physiol. 102:120–29 [Google Scholar]
  140. Tierney A, Kraus N. 2013a. The ability to move to a beat is linked to the consistency of neural responses to sound. J. Neurosci. 33:14981–88 [Google Scholar]
  141. Tierney A, Kraus N. 2013b. Music training for the development of reading skills. Progress in Brain Research. Changing Brains: Applying Brain Plasticity to Advance and Recover Human Ability MM Merzenich, M Nahum, TM Van Vleet 207209–21 Amsterdam: Elsevier [Google Scholar]
  142. Tierney A, Kraus N. 2014. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH). Front. Hum. Neurosci. 8:949 [Google Scholar]
  143. Tierney AT, Kraus N. 2013c. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain Lang. 124:225–31 [Google Scholar]
  144. Tierney A, Kraus N. 2015. Evidence for multiple rhythmic skills. PLOS ONE In press
  145. Tierney AT, Krizman J, Kraus N. 2015. Music training alters the course of adolescent auditory development. PNAS 112:10062–67 [Google Scholar]
  146. Turk A, Shattuck-Hufnagel S. 2014. Timing in talking: What is it used for, and how is it controlled?. Philos. Trans. R. Soc. B 369:20130395 [Google Scholar]
  147. Tzounopoulos T, Kraus N. 2009. Learning to encode timing: mechanisms of plasticity in the auditory brainstem. Neuron 62:463–69 [Google Scholar]
  148. Ulanovsky N, Las L, Farkas D, Nelken I. 2004. Multiple time scales of adaptation in auditory cortex neurons. J. Neurosci. 24:10440–53 [Google Scholar]
  149. Ullman MT. 2001. A neurocognitive perspective on language: the declarative/procedural model. Nat. Rev. Neurosci. 2:717–26 [Google Scholar]
  150. Vuust P, Brattico E, Seppänen M, Näätänen R, Tervaniemi M. 2012. Practiced musical style shapes auditory skills. Ann. N. Y. Acad. Sci. 1252:139–46 [Google Scholar]
  151. Watkins KE, Strafella AP, Paus T. 2003. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41:989–94 [Google Scholar]
  152. Wen B, Wang GI, Dean I, Delgutte B. 2009. Dynamic range adaptation to sound level statistics in the auditory nerve. J. Neurosci. 29:13797–808 [Google Scholar]
  153. White-Schwoch T, Woodruff Carr K, Anderson S, Strait DL, Kraus N. 2013. Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. J. Neurosci. 33:17667–74 [Google Scholar]
  154. White-Schwoch T, Woodruff Carr K, Thompson EC, Anderson S, Nicol T. et al. 2015. Auditory processing in noise: a preschool biomarker for literacy. PLOS Biol 13:e1002196 [Google Scholar]
  155. Wilson SM, Saygin AP, Sereno MI, Iacoboni M. 2004. Listening to speech activates motor areas involved in speech production. Nat. Neurosci. 7:701–2 [Google Scholar]
  156. Wittgenstein L. 1953. Philosophical Investigations Oxford, UK: Blackwell
  157. Woodruff Carr K, White-Schwoch T, Tierney AT, Strait DL, Kraus N. 2014. Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. PNAS 111:14559–64 [Google Scholar]
  158. Zarco W, Merchant H, Prado L, Mendez JC. 2009. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J. Neurophysiol. 102:3191–202 [Google Scholar]
  159. Zatorre RJ, Chen JL, Penhune VB. 2007. When the brain plays music: auditory–motor interactions in music perception and production. Nat. Rev. Neurosci. 8:547–58 [Google Scholar]
  160. Zendel BR, Tremblay CD, Belleville S, Peretz I. 2015. The impact of musicianship on the cortical mechanisms related to separating speech from background noise. J. Cogn. Neurosci. 27:1044–59 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error