1932

Abstract

Selective visual attention describes the tendency of visual processing to be confined largely to stimuli that are relevant to behavior. It is among the most fundamental of cognitive functions, particularly in humans and other primates for whom vision is the dominant sense. We review recent progress in identifying the neural mechanisms of selective visual attention. We discuss evidence from studies of different varieties of selective attention and examine how these varieties alter the processing of stimuli by neurons within the visual system, current knowledge of their causal basis, and methods for assessing attentional dysfunctions. In addition, we identify some key questions that remain in identifying the neural mechanisms that give rise to the selective processing of visual information.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-122414-033400
2017-01-03
2024-07-19
Loading full text...

Full text loading...

/deliver/fulltext/psych/68/1/annurev-psych-122414-033400.html?itemId=/content/journals/10.1146/annurev-psych-122414-033400&mimeType=html&fmt=ahah

Literature Cited

  1. Armstrong KM, Chang MH, Moore T. 2009. Selection and maintenance of spatial information by frontal eye field neurons. J. Neurosci. 29:15621–29 [Google Scholar]
  2. Armstrong KM, Fitzgerald JK, Moore T. 2006. Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50:791–98 [Google Scholar]
  3. Armstrong KM, Moore T. 2007. Rapid enhancement of visual cortical response discriminability by micro-stimulation of the frontal eye field. PNAS 104:9499–504 [Google Scholar]
  4. Arnsten AF. 2011. Catecholamine influences on dorsolateral prefrontal cortical networks. Biol. Psychiatry 69:12e89–99 [Google Scholar]
  5. Arnsten AF, Scahill L, Findling RL. 2007. Alpha2-adrenergic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: emerging concepts from new data. J. Child Adolesc. Psychopharmacol. 17:393–406 [Google Scholar]
  6. Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28:403–50 [Google Scholar]
  7. Averbeck BB, Latham PE, Pouget A. 2006. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7:358–66 [Google Scholar]
  8. Azouz R, Gray CM. 2003. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron 37:513–23 [Google Scholar]
  9. Balan PF, Gottlieb J. 2006. Integration of exogenous input into a dynamic salience map revealed by perturbing attention. J. Neurosci. 26:9239–49 [Google Scholar]
  10. Baldauf D, Desimone R. 2014. Neural mechanisms of object-based attention. Science 344:424–27 [Google Scholar]
  11. Baruni JK, Lau B, Salzman CD. 2015. Reward expectation differentially modulates attentional behavior and activity in visual area V4. Nat. Neurosci. 18:1656–63 [Google Scholar]
  12. Bashinski HS, Bacharach VR. 1980. Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations. Percept. Psychophys. 28:241–48 [Google Scholar]
  13. Beck DM, Kastner S. 2005. Stimulus context modulates competition in human extrastriate cortex. Nat. Neurosci. 8:1110–16 [Google Scholar]
  14. Berridge CW, Waterhouse BD. 2003. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42:33–84 [Google Scholar]
  15. Bichot NP, Heard MT, DeGennaro EM, Desimone R. 2015. A source for feature-based attention in the prefrontal cortex. Neuron 88:832–44 [Google Scholar]
  16. Bichot NP, Rossi AF, Desimone R. 2005. Parallel and serial neural mechanisms for visual search in macaque area V4. Science 308:529–34 [Google Scholar]
  17. Bichot NP, Schall JD. 1999. Effects of similarity and history on neural mechanisms of visual selection. Nat. Neurosci. 2:549–54 [Google Scholar]
  18. Bichot NP, Schall JD. 2002. Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. J. Neurosci. 22:4675–85 [Google Scholar]
  19. Bisley JW, Goldberg ME. 2010. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33:1–21 [Google Scholar]
  20. Born S, Ansorge U, Kerzel D. 2012. Feature-based effects in the coupling between attention and saccades. J. Vis. 12:27 [Google Scholar]
  21. Briggs F, Mangun GR, Usrey WM. 2013. Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499:476–80 [Google Scholar]
  22. Bruce CJ, Goldberg ME. 1985. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53:603–35 [Google Scholar]
  23. Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R. 2011. Laminar differences in gamma and alpha coherence in the ventral stream. PNAS 108:11262–67 [Google Scholar]
  24. Buffalo EA, Fries P, Landman R, Liang H, Desimone R. 2010. A backward progression of attentional effects in the ventral stream. PNAS 107:361–65 [Google Scholar]
  25. Burrows BE, Moore T. 2009. Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J. Neurosci. 29:15169–77 [Google Scholar]
  26. Burrows BE, Zirnsak M, Akhlaghpour H, Wang M, Moore T. 2014. Global selection of saccadic target features by neurons in area V4. J. Neurosci. 34:6700–6 [Google Scholar]
  27. Buschman TJ, Miller EK. 2007. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–62 [Google Scholar]
  28. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F. et al. 2009. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–67 [Google Scholar]
  29. Carrasco M. 2011. Visual attention: the past 25 years. Vis. Res. 51:1484–525 [Google Scholar]
  30. Cavanaugh J, Wurtz RH. 2004. Subcortical modulation of attention counters change blindness. J. Neurosci. 24:11236–43 [Google Scholar]
  31. Chelazzi L, Duncan J, Miller EK, Desimone R. 1998. Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 80:2918–40 [Google Scholar]
  32. Chelazzi L, Miller EK, Duncan J, Desimone R. 1993. A neural basis for visual search in inferior temporal cortex. Nature 363:345–47 [Google Scholar]
  33. Chudasama Y, Robbins TW. 2004. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 29:1628–36 [Google Scholar]
  34. Churan J, Guitton D, Pack CC. 2012. Perisaccadic remapping and rescaling of visual responses in macaque superior colliculus. PLOS ONE 7:e52195 [Google Scholar]
  35. Cohen MR, Maunsell JH. 2009. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12:1594–600 [Google Scholar]
  36. Cohen MR, Maunsell JH. 2010. A neuronal population measure of attention predicts behavioral performance on individual trials. J. Neurosci. 30:15241–53 [Google Scholar]
  37. Cohen MR, Maunsell JH. 2011. Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron 70:1192–204 [Google Scholar]
  38. Connor CE, Gallant JL, Preddie DC, Van Essen DC. 1996. Responses in area V4 depend on the spatial relationship between stimulus and attention. J. Neurophysiol. 75:1306–8 [Google Scholar]
  39. Connor CE, Preddie DC, Gallant JL, Van Essen DC. 1997. Spatial attention effects in macaque area V4. J. Neurosci. 17:3201–14 [Google Scholar]
  40. Constantinidis C, Steinmetz MA. 2005. Posterior parietal cortex automatically encodes the location of salient stimuli. J. Neurosci. 25:233–38 [Google Scholar]
  41. Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. 1991. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11:2382–402 [Google Scholar]
  42. Corbetta M, Shulman GL. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3:201–15 [Google Scholar]
  43. Crovitz HF, Daves W. 1962. Tendencies to eye movement and perceptual accuracy. J. Exp. Psychol. 63:495–98 [Google Scholar]
  44. De Weerd P, Peralta MR 3rd, Desimone R, Ungerleider LG. 1999. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nat. Neurosci. 2:753–58 [Google Scholar]
  45. Desimone R, Duncan J. 1995. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18:193–222 [Google Scholar]
  46. Deubel H, Schneider WX. 1996. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis. Res. 36:1827–37 [Google Scholar]
  47. Devilbiss DM, Page ME, Waterhouse BD. 2006. Locus ceruleus regulates sensory encoding by neurons and networks in waking animals. J. Neurosci. 26:9860–72 [Google Scholar]
  48. Disney AA, Aoki C, Hawken MJ. 2007. Gain modulation by nicotine in macaque V1. Neuron 56:701–13 [Google Scholar]
  49. Downing CJ. 1988. Expectancy and visual-spatial attention: effects on perceptual quality. J. Exp. Psychol. Hum. Percept. Perform. 14:188–202 [Google Scholar]
  50. Duhamel JR, Colby CL, Goldberg ME. 1992. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92 [Google Scholar]
  51. Egeth HE, Yantis S. 1997. Visual attention: control, representation, and time course. Annu. Rev. Psychol. 48:269–97 [Google Scholar]
  52. Einhäuser W, Rutishauser U, Koch C. 2008. Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. J. Vis. 8:2. 1–19 [Google Scholar]
  53. Ekstrom LB, Roelfsema PR, Arsenault JT, Bonmassar G, Vanduffel W. 2008. Bottom-up dependent gating of frontal signals in early visual cortex. Science 321:414–17 [Google Scholar]
  54. Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM. 1998. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J. Neurosci. 18:5901–7 [Google Scholar]
  55. Fecteau JH, Munoz DP. 2006. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10:382–90 [Google Scholar]
  56. Ferrier D. 1886. The Functions of the Brain London: Smith, Elder & Co. [Google Scholar]
  57. Fischer B, Boch R. 1981. Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Exp. Brain Res. 44:129–37 [Google Scholar]
  58. Foote SL, Aston-Jones G, Bloom FE. 1980. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. PNAS 77:3033–37 [Google Scholar]
  59. Fries P. 2009. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32:209–24 [Google Scholar]
  60. Fries P, Reynolds JH, Rorie AE, Desimone R. 2001. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–63 [Google Scholar]
  61. Fries W. 1984. Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J. Comp. Neurol. 230:55–76 [Google Scholar]
  62. Furey ML, Pietrini P, Haxby JV, Drevets WC. 2008. Selective effects of cholinergic modulation on task performance during selective attention. Neuropsychopharmacology 33:913–23 [Google Scholar]
  63. Ganmor E, Landy MS, Simoncelli EP. 2015. Near-optimal integration of orientation information across saccades. J. Vis. 15:8 [Google Scholar]
  64. Goard M, Dan Y. 2009. Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 12:1444–49 [Google Scholar]
  65. Goldberg ME, Bisley JW, Powell KD, Gottlieb J. 2006. Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior. Prog. Brain Res. 155:157–75 [Google Scholar]
  66. Goldberg ME, Bushnell MC. 1981. Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J. Neurophysiol. 46:773–87 [Google Scholar]
  67. Goodale MA, Milner AD. 1992. Separate visual pathways for perception and action. Trends Neurosci 15:20–25 [Google Scholar]
  68. Grant SJ, Aston-Jones G, Redmond DE Jr. 1988. Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Res. Bull. 21:401–10 [Google Scholar]
  69. Guillem K, Bloem B, Poorthuis RB, Loos M, Smit AB. et al. 2011. Nicotinic acetylcholine receptor β2 subunits in the medial prefrontal cortex control attention. Science 333:888–91 [Google Scholar]
  70. Hamker FH. 2005a. The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. Comput. Vis. Image Underst. 100:64–106 [Google Scholar]
  71. Hamker FH. 2005b. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb. Cortex 15:431–47 [Google Scholar]
  72. Hamker FH, Zirnsak M. 2006. V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field. Neural. Netw. 19:1371–82 [Google Scholar]
  73. Hamker FH, Zirnsak M, Calow D, Lappe M. 2008. The peri-saccadic perception of objects and space. PLOS Comput. Biol. 4:e31 [Google Scholar]
  74. Handy TC, Kingstone A, Mangun GR. 1996. Spatial distribution of visual attention: perceptual sensitivity and response latency. Percept. Psychophys. 58:613–27 [Google Scholar]
  75. Hawkins HL, Hillyard SA, Luck SJ, Mouloua M, Downing CJ, Woodward DP. 1990. Visual attention modulates signal detectability. J. Exp. Psychol. Hum. Percept. Perform. 16:802–11 [Google Scholar]
  76. Hegdé J, Felleman DJ. 2003. How selective are V1 cells for pop-out stimuli. J. Neurosci. 23:9968–80 [Google Scholar]
  77. Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M. et al. 1994. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–46 [Google Scholar]
  78. Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A. 2008. Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454:1110–14 [Google Scholar]
  79. Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ. 2010. When size matters: Attention affects performance by contrast or response gain. Nat. Neurosci. 13:1554–59 [Google Scholar]
  80. Herwig A, Weiss K, Schneider WX. 2015. When circles become triangular: how transsaccadic predictions shape the perception of shape. Ann. N. Y. Acad. Sci. 1339:97–105 [Google Scholar]
  81. Hillyard SA. 1993. Electrical and magnetic brain recordings: contributions to cognitive neuroscience. Curr. Opin. Neurobiol. 3:217–24 [Google Scholar]
  82. Hoffman JE, Subramaniam B. 1995. The role of visual attention in saccadic eye movements. Percept. Psychophys. 57:787–95 [Google Scholar]
  83. Hu Y, Zylberberg J, Shea-Brown E. 2014. The sign rule and beyond: boundary effects, flexibility, and noise correlations in neural population codes. PLOS Comput. Biol. 10:e1003469 [Google Scholar]
  84. Ipata AE, Gee AL, Gottlieb J, Bisley JW, Goldberg ME. 2006. LIP responses to a popout stimulus are reduced if it is overtly ignored. Nat. Neurosci. 9:1071–76 [Google Scholar]
  85. Itti L, Koch C. 2001. Computational modelling of visual attention. Nat. Rev. Neurosci. 2:194–203 [Google Scholar]
  86. Jazayeri M, Movshon JA. 2007. A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446:912–15 [Google Scholar]
  87. Jonikaitis D, Theeuwes J. 2013. Dissociating oculomotor contributions to spatial and feature-based selection. J. Neurophysiol. 110:1525–34 [Google Scholar]
  88. Joseph JS, Chun MM, Nakayama K. 1997. Attentional requirements in a ‘preattentive’ feature search task. Nature 387:805–7 [Google Scholar]
  89. Jüttner M, Röhler R. 1993. Lateral information transfer across saccadic eye movements. Percept. Psychophys. 53:210–20 [Google Scholar]
  90. Kaiser M, Lappe M. 2004. Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41:293–300 [Google Scholar]
  91. Kastner S, Ungerleider LG. 2001. The neural basis of biased competition in human visual cortex. Neuropsychologia 39:1263–76 [Google Scholar]
  92. Kim J, Wasserman E, Edward A, Castro L, Freeman JH. 2016. Anterior cingulate cortex inactivation impairs rodent visual selective attention and prospective memory. Behav. Neurosci. 130:75–90 [Google Scholar]
  93. Knierim JJ, van Essen DC. 1992. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67:961–80 [Google Scholar]
  94. Kowler E, Anderson E, Dosher B, Blaser E. 1995. The role of attention in the programming of saccades. Vis. Res. 35:1897–916 [Google Scholar]
  95. Lamme VA. 1995. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15:1605–15 [Google Scholar]
  96. Latto R, Cowey A. 1971. Visual field defects after frontal eye-field lesions in monkeys. Brain Res 30:1–24 [Google Scholar]
  97. Lee J, Maunsell JH. 2009. A normalization model of attentional modulation of single unit responses. PLOS ONE 4:e4651 [Google Scholar]
  98. Lovejoy LP, Krauzlis RJ. 2010. Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat. Neurosci. 13:261–66 [Google Scholar]
  99. Luck SJ, Chelazzi L, Hillyard SA, Desimone R. 1997. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77:24–42 [Google Scholar]
  100. Luck SJ, Woodman GF, Vogel EK. 2000. Event-related potential studies of attention. Trends Cogn. Sci. 4:11432–40 [Google Scholar]
  101. Luo TZ, Maunsell JH. 2015. Neuronal modulations in visual cortex are associated with only one of multiple components of attention. Neuron 86:1182–88 [Google Scholar]
  102. Lynch JC, Hoover JE, Strick PL. 1994. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp. Brain Res. 100:181–86 [Google Scholar]
  103. Ma CL, Arnsten AF, Li BM. 2005. Locomotor hyperactivity induced by blockade of prefrontal cortical α2-adrenoceptors in monkeys. Biol. Psychiatry 57:192–95 [Google Scholar]
  104. Ma CL, Qi XL, Peng JY, Li BM. 2003. Selective deficit in no-go performance induced by blockade of prefrontal cortical α2-adrenoceptors in monkeys. NeuroReport 14:1013–16 [Google Scholar]
  105. Martin KA, Schröder S. 2016. Phase locking of multiple single neurons to the local field potential in cat V1. J. Neurosci. 36:2494–502 [Google Scholar]
  106. Martínez-Trujillo JC, Treue S. 2004. Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr. Biol. 14:744–51 [Google Scholar]
  107. Mason DJ, Humphreys GW, Kent LS. 2003. Exploring selective attention in ADHD: visual search through space and time. J. Child Psychol. Psychiatry 44:1158–76 [Google Scholar]
  108. Maunsell JH, Cook EP. 2002. The role of attention in visual processing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357:1063–72 [Google Scholar]
  109. Maunsell JH, Treue S. 2006. Feature-based attention in visual cortex. Trends Neurosci 29:317–22 [Google Scholar]
  110. McAdams CJ, Maunsell JH. 1999. Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23:765–73 [Google Scholar]
  111. McAdams CJ, Maunsell JH. 2000. Attention to both space and feature modulates neuronal responses in macaque area V4. J. Neurophysiol. 83:1751–55 [Google Scholar]
  112. McAlonan K, Cavanaugh J, Wurtz RH. 2008. Guarding the gateway to cortex with attention in visual thalamus. Nature 456:391–94 [Google Scholar]
  113. Metherate R, Ashe JH. 1993. Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse 14:132–43 [Google Scholar]
  114. Mitchell JF, Sundberg KA, Reynolds JH. 2007. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55:131–41 [Google Scholar]
  115. Mitchell JF, Sundberg KA, Reynolds JH. 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:879–88 [Google Scholar]
  116. Moore T. 1999. Shape representations and visual guidance of saccadic eye movements. Science 285:1914–17 [Google Scholar]
  117. Moore T, Armstrong KM. 2003. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–73 [Google Scholar]
  118. Moore T, Armstrong KM, Fallah M. 2003. Visuomotor origins of covert spatial attention. Neuron 40:671–83 [Google Scholar]
  119. Moore T, Chang MH. 2009. Presaccadic discrimination of receptive field stimuli by area V4 neurons. Vis. Res. 49:1227–32 [Google Scholar]
  120. Moore T, Fallah M. 2001. Control of eye movements and spatial attention. PNAS 98:1273–76 [Google Scholar]
  121. Moore T, Tolias AS, Schiller PH. 1998. Visual representations during saccadic eye movements. PNAS 95:8981–84 [Google Scholar]
  122. Moran J, Desimone R. 1985. Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84 [Google Scholar]
  123. Motter BC. 1994a. Neural correlates of attentive selection for color or luminance in extrastriate area V4. J. Neurosci. 14:2178–89 [Google Scholar]
  124. Motter BC. 1994b. Neural correlates of feature selective memory and popout in extrastriate area V4. J. Neurosci. 14:2190–99 [Google Scholar]
  125. Mountcastle VB, Andersen RA, Motter BC. 1981. The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 1:1218–25 [Google Scholar]
  126. Müller HJ, Geyer T, Zehetleitner M, Krummenacher J. 2009. Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. J. Exp. Psychol. Hum. Percept. Perform. 35:1–16 [Google Scholar]
  127. Müller HJ, Humphreys GW. 1991. Luminance-increment detection: capacity-limited or not. J. Exp. Psychol. Hum. Percept. Perform. 17:107–24 [Google Scholar]
  128. Müller JR, Philiastides MG, Newsome WT. 2005. Microstimulation of the superior colliculus focuses attention without moving the eyes. PNAS 102:524–29 [Google Scholar]
  129. Nakamura K, Colby CL. 2002. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. PNAS 99:4026–31 [Google Scholar]
  130. Navalpakkam V, Itti L. 2007. Search goal tunes features optimally. Neuron 53:605–17 [Google Scholar]
  131. Nothdurft HC, Gallant JL, Van Essen DC. 1999. Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia. Vis. Neurosci. 16:15–34 [Google Scholar]
  132. Noudoost B, Chang MH, Steinmetz NA, Moore T. 2010. Top-down control of visual attention. Curr. Opin. Neurobiol. 20:183–90 [Google Scholar]
  133. Noudoost B, Moore T. 2011a. Control of visual cortical signals by prefrontal dopamine. Nature 474:372–75 [Google Scholar]
  134. Noudoost B, Moore T. 2011b. The role of neuromodulators in selective attention. Trends Cogn. Sci. 15:585–91 [Google Scholar]
  135. Ogawa T, Komatsu H. 2006. Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search. Exp. Brain Res. 173:1–13 [Google Scholar]
  136. Peck CJ, Salzman CD. 2014. The amygdala and basal forebrain as a pathway for motivationally guided attention. J. Neurosci. 34:13757–67 [Google Scholar]
  137. Pessoa L, Kastner S, Ungerleider LG. 2003. Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J. Neurosci. 23:3990–98 [Google Scholar]
  138. Pollatsek A, Rayner K, Henderson JM. 1990. Role of spatial location in integration of pictorial information across saccades. J. Exp. Psychol. Hum. Percept. Perform. 16:199–210 [Google Scholar]
  139. Posner MI. 1980. Orienting of attention. Q. J. Exp. Psychol. 32:3–25 [Google Scholar]
  140. Prinzmetal W, Taylor N. 2006. Color singleton pop-out does not always poop out: an alternative to visual search. Psychon. Bull. Rev. 13:576–80 [Google Scholar]
  141. Reynolds JH, Chelazzi L. 2004. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27:611–47 [Google Scholar]
  142. Reynolds JH, Heeger DJ. 2009. The normalization model of attention. Neuron 61:168–85 [Google Scholar]
  143. Reynolds JH, Pasternak T, Desimone R. 2000. Attention increases sensitivity of V4 neurons. Neuron 26:703–14 [Google Scholar]
  144. Rizzolatti G, Riggio L, Dascola I, Umiltá C. 1987. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:31–40 [Google Scholar]
  145. Rolfs M, Carrasco M. 2012. Rapid simultaneous enhancement of visual sensitivity and perceived contrast during saccade preparation. J. Neurosci. 32:13744–52 [Google Scholar]
  146. Ross J, Morrone MC, Burr DC. 1997. Compression of visual space before saccades. Nature 386:598–601 [Google Scholar]
  147. Ruff DA, Cohen MR. 2014. Attention can either increase or decrease spike count correlations in visual cortex. Nat. Neurosci. 17:1591–97 [Google Scholar]
  148. Sàenz M, Buraĉas GT, Boynton GM. 2002. Global effects of feature-based attention in human visual cortex. Nat. Neurosci. 5:631–32 [Google Scholar]
  149. Sàenz M, Buraĉas GT, Boynton GM. 2003. Global feature-based attention for motion and color. Vis. Res. 43:629–37 [Google Scholar]
  150. Salinas E, Sejnowski TJ. 2001. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2:539–50 [Google Scholar]
  151. Schafer RJ, Moore T. 2007. Attention governs action in the primate frontal eye field. Neuron 56:541–51 [Google Scholar]
  152. Schafer RJ, Moore T. 2011. Selective attention from voluntary control of neurons in prefrontal cortex. Science 332:1568–71 [Google Scholar]
  153. Schall JD, Morel A, King DJ, Bullier J. 1995. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15:4464–87 [Google Scholar]
  154. Schiller PH, Lee K. 1991. The role of the primate extrastriate area V4 in vision. Science 251:1251–53 [Google Scholar]
  155. Scolari M, Serences JT. 2009. Adaptive allocation of attentional gain. J. Neurosci. 29:11933–42 [Google Scholar]
  156. Seamans JK, Yang CR. 2004. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74:1–58 [Google Scholar]
  157. Sheinberg DL, Logothetis NK. 2001. Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J. Neurosci. 21:1340–50 [Google Scholar]
  158. Shepherd M, Findlay JM, Hockey RJ. 1986. The relationship between eye movements and spatial attention. Q. J. Exp. Psychol. A 38:475–91 [Google Scholar]
  159. Shin S, Sommer MA. 2012. Division of labor in frontal eye field neurons during presaccadic remapping of visual receptive fields. J. Neurophysiol. 108:2144–59 [Google Scholar]
  160. Siegle JH, Pritchett DL, Moore CI. 2014. Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli. Nat. Neurosci. 17:1371–79 [Google Scholar]
  161. Soltani A, Koch C. 2010. Visual saliency computations: mechanisms, constraints, and the effect of feedback. J. Neurosci. 30:12831–43 [Google Scholar]
  162. Sommer MA, Wurtz RH. 2006. Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–77 [Google Scholar]
  163. Spitzer H, Desimone R, Moran J. 1988. Increased attention enhances both behavioral and neuronal performance. Science 240:338–40 [Google Scholar]
  164. Squire RF, Noudoost B, Schafer RF, Moore T. 2013. Prefrontal contributions to visual selective attention. Annu. Rev. Neurosci. 36:451–66 [Google Scholar]
  165. Sridharan D, Steinmetz NA, Moore T, Knudsen EI. 2014. Distinguishing bias from sensitivity effects in multialternative detection tasks. J. Vis. 14:16 [Google Scholar]
  166. Stanton GB, Bruce CJ, Goldberg ME. 1995. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J. Comp. Neurol. 353:291–305 [Google Scholar]
  167. Stanton GB, Goldberg ME, Bruce CJ. 1988. Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. J. Comp. Neurol. 271:493–506 [Google Scholar]
  168. Steinmetz NA, Moore T. 2014. Eye movement preparation modulates neuronal responses in area V4 when dissociated from attentional demands. Neuron 83:496–506 [Google Scholar]
  169. Thompson KG, Bichot NP. 2005. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147:251–62 [Google Scholar]
  170. Thompson KG, Biscoe KL, Sato TR. 2005. Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25:9479–87 [Google Scholar]
  171. Tolias AS, Moore T, Smirnakis SM, Tehovnik EJ, Siapas AG, Schiller PH. 2001. Eye movements modulate visual receptive fields of V4 neurons. Neuron 29:757–67 [Google Scholar]
  172. Treisman AM, Gelade G. 1980. A feature-integration theory of attention. Cogn. Psychol. 12:197–136 [Google Scholar]
  173. Treisman AM, Sato S. 1990. Conjunction search revisited. J. Exp. Psychol. Hum. Percept. Perform. 16:459–78 [Google Scholar]
  174. Tremblay N, Warren RA, Dykes RW. 1990. Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. II. Cortical neurons excited by somatic stimuli. J. Neurophysiol. 64:1212–22 [Google Scholar]
  175. Treue S, Martínez-Trujillo JC. 1999. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399:575–79 [Google Scholar]
  176. Umeno MM, Goldberg ME. 1997. Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J. Neurophysiol. 78:1373–83 [Google Scholar]
  177. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF. 2007. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat. Neurosci. 10:376–84 [Google Scholar]
  178. von Helmholtz H. 1925 (1867). Treatise on Physiological Optics transl. JPC Southall New York: Dover (from German) [Google Scholar]
  179. Walker MF, Fitzgibbon EJ, Goldberg ME. 1995. Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J. Neurophysiol. 73:1988–2003 [Google Scholar]
  180. Wang F, Chen M, Yan Y, Zhaoping L, Li W. 2015. Modulation of neuronal responses by exogenous attention in macaque primary visual cortex. J. Neurosci. 35:13419–29 [Google Scholar]
  181. Warburton DM, Rusted JM. 1993. Cholinergic control of cognitive resources. Neuropsychobiology 28:43–46 [Google Scholar]
  182. Wardak C, Ibos G, Duhamel JR, Olivier E. 2006. Contribution of the monkey frontal eye field to covert visual attention. J. Neurosci. 26:4228–35 [Google Scholar]
  183. Welch K, Stuteville P. 1958. Experimental production of unilateral neglect in monkeys. Brain 81:341–47 [Google Scholar]
  184. White AL, Rolfs M, Carrasco M. 2013. Adaptive deployment of spatial and feature-based attention before saccades. Vis. Res. 85:26–35 [Google Scholar]
  185. Wolfe JM. 1994. Guided Search 2.0: a revised model of visual search. Psychon. Bull. Rev. 1:202–38 [Google Scholar]
  186. Wurtz RH, Mohler CW. 1976. Enhancement of visual responses in monkey striate cortex and frontal eye fields. J. Neurophysiol. 39:766–72 [Google Scholar]
  187. Zénon A, Krauzlis RJ. 2012. Attention deficits without cortical neuronal deficits. Nature 489:434–37 [Google Scholar]
  188. Zhao M, Gersch TM, Schnitzer BS, Dosher BA, Kowler E. 2012. Eye movements and attention: the role of pre-saccadic shifts of attention in perception, memory and the control of saccades. Vis. Res. 1:40–60 [Google Scholar]
  189. Zirnsak M, Hamker FH. 2010. Attention alters feature space in motion processing. J. Neurosci. 30:6882–90 [Google Scholar]
  190. Zirnsak M, Lappe M, Hamker FH. 2010. The spatial distribution of receptive field changes in a model of peri-saccadic perception: predictive remapping and shifts towards the saccade target. Vis. Res. 50:1328–37 [Google Scholar]
  191. Zirnsak M, Moore T. 2014. Saccades and shifting receptive fields: anticipating consequences or selecting targets. Trends Cogn. Sci. 18:621–28 [Google Scholar]
  192. Zirnsak M, Steinmetz NA, Noudoost B, Xu KZ, Moore T. 2014. Visual space is compressed in prefrontal cortex before eye movements. Nature 507:504–7 [Google Scholar]
/content/journals/10.1146/annurev-psych-122414-033400
Loading
/content/journals/10.1146/annurev-psych-122414-033400
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error