1932

Abstract

A decade ago, we hypothesized that drug addiction can be viewed as a transition from voluntary, recreational drug use to compulsive drug-seeking habits, neurally underpinned by a transition from prefrontal cortical to striatal control over drug seeking and taking as well as a progression from the ventral to the dorsal striatum. Here, in the light of burgeoning, supportive evidence, we reconsider and elaborate this hypothesis, in particular the refinements in our understanding of ventral and dorsal striatal mechanisms underlying goal-directed and habitual drug seeking, the influence of drug-associated Pavlovian-conditioned stimuli on drug seeking and relapse, and evidence for impairments in top-down prefrontal cortical inhibitory control over this behavior. We further review animal and human studies that have begun to define etiological factors and individual differences in the propensity to become addicted to drugs, leading to the description of addiction endophenotypes, especially for cocaine addiction. We consider the prospect of novel treatments for addiction that promote abstinence from and relapse to drug use.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-122414-033457
2016-01-04
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/psych/67/1/annurev-psych-122414-033457.html?itemId=/content/journals/10.1146/annurev-psych-122414-033457&mimeType=html&fmt=ahah

Literature Cited

  1. Am. Psychiatr. Assoc 2013. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: Am. Psychiatr. Publ, 5th ed..
  2. Anthony JC, Warner LA, Kessler RC. 1994. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the national comorbidity survey. Exp. Clin. Psychopharmacol. 2:244–68 [Google Scholar]
  3. Aron AR, Robbins TW, Poldrack RA. 2014. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Neurosci. 18:4177–85 [Google Scholar]
  4. Arroyo M, Markou A, Robbins TW, Everitt BJ. 1998. Acquisition, maintenance and reinstatement of intravenous cocaine self-administration under a second-order schedule of reinforcement in rats: effects of conditioned cues and unlimited access to cocaine. Psychopharmacology 140:331–44 [Google Scholar]
  5. Balleine BW, O'Doherty JP. 2010. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–69 [Google Scholar]
  6. Barak S, Liu F, Neasta J, Ben Hamida S, Janak PH, Ron D. 2014. Erasure of alcohol-associated memories by mTORC1 inhibition prevents relapse. Alcohol 48:176–76 [Google Scholar]
  7. Barker JM, Taylor JR. 2014. Habitual alcohol seeking: modeling the transition from casual drinking to addiction. Neurosci. Biobehav. Rev. 47:281–94 [Google Scholar]
  8. Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE. 2001. Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39:376–89 [Google Scholar]
  9. Belin D, Belin-Rauscent A, Murray JE, Everitt BJ. 2013. Addiction: failure of control over maladaptive incentive habits. Curr. Opin. Neurobiol. 23:564–72 [Google Scholar]
  10. Belin D, Berson N, Balado E, Piazza PV, Deroche-Gamonet V. 2011. High-novelty-preference rats are predisposed to compulsive cocaine self-administration. Neuropsychopharmacology 36:569–79 [Google Scholar]
  11. Belin D, Everitt BJ. 2008. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–41 [Google Scholar]
  12. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. 2009. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav. Brain Res. 199:89–102 [Google Scholar]
  13. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ. 2008. High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–55 [Google Scholar]
  14. Belin-Rauscent A, Simon M, Everitt BJ, Benoit-Marand M, Belin D. 2013. Corticostriatal interaction subserving incentive habits. Behav. Pharmacol. 24:1.4 [Google Scholar]
  15. Bohbot VD, Del Balso D, Conrad K, Konishi K, Leyton M. 2013. Caudate nucleus-dependent navigational strategies are associated with increased use of addictive drugs. Hippocampus 23:973–84 [Google Scholar]
  16. Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC. et al. 2004. Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol. Psychiatry 55:77–84 [Google Scholar]
  17. Cannella N, Halbout B, Uhrig S, Evrard L, Corsi M. et al. 2013. The mGluR2/3 agonist LY379268 induced anti-reinstatement effects in rats exhibiting addiction-like behavior. Neuropsychopharmacology 38:2048–56 [Google Scholar]
  18. Caprioli D, Sawiak SJ, Merlo E, Theobald DEH, Spoelder M. et al. 2014. Gamma aminobutyric acidergic and neuronal structural markers in the nucleus accumbens core underlie trait-like impulsive behavior. Biol. Psychiatry 75:115–23 [Google Scholar]
  19. Cardinal RN, Everitt BJ. 2004. Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr. Opin. Neurobiol. 14:156–62 [Google Scholar]
  20. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. 2002. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26:321–52 [Google Scholar]
  21. Castañé A, Theobald DEH, Robbins TW. 2010. Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav. Brain Res. 210:74–83 [Google Scholar]
  22. Chen BT, Yau H-J, Hatch C, Kusumoto-Yoshida I, Cho SL. et al. 2013. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496:359–62 [Google Scholar]
  23. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP. 1999. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156:11–18 [Google Scholar]
  24. Chudasama Y, Robbins TW. 2003. Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23:8771–80 [Google Scholar]
  25. Clark L, Bechara A, Damasio H, Aitken MRF, Sahakian BJ, Robbins TW. 2008. Differential effects of insular and ventromedial prefrontal cortex damage on risky decision-making. Brain 131:1311–22 [Google Scholar]
  26. Clarke HF, Robbins TW, Roberts AC. 2008. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J. Neurosci. 28:10972–82 [Google Scholar]
  27. Clemens KJ, Castino MR, Cornish JL, Goodchild AK, Holmes NM. 2014. Behavioral and neural substrates of habit formation in rats intravenously self-administering nicotine. Neuropsychopharmacology 39:2584–93 [Google Scholar]
  28. Conklin CA, Tiffany ST. 2002. Applying extinction research and theory to cue-exposure in addiction treatments. Addiction 97:155–67 [Google Scholar]
  29. Contreras M, Ceric F, Torrealba F. 2007. Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 318:655–58 [Google Scholar]
  30. Corbit LH, Balleine BW. 2005. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of Pavlovian-instrumental transfer. J. Neurosci. 25:962–70 [Google Scholar]
  31. Corbit LH, Nie H, Janak PH. 2012. Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol. Psychiatry 72:389–95 [Google Scholar]
  32. Corbit LH, Nie H, Janak PH. 2014. Habitual responding for alcohol depends upon both AMPA and D2 receptor signaling in the dorsolateral striatum. Front. Behav. Neurosci. 8301
  33. Covington HE, Miczek KA. 2005. Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology 183:331–40 [Google Scholar]
  34. Cuthbert BN. 2014. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13:28–35 [Google Scholar]
  35. Dalley JW, Everitt BJ, Robbins TW. 2011. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69:680–94 [Google Scholar]
  36. Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH. et al. 2007. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–70 [Google Scholar]
  37. Davis M. 2002. Role of NMDA receptors and MAP kinase in the amygdala in extinction of fear: clinical implications for exposure therapy. Eur. J. Neurosci. 16:395–98 [Google Scholar]
  38. de Wit H, Crean J, Richards JB. 2000. Effects of d-amphetamine and ethanol on a measure of behavioural inhibition in humans. Behav. Neurosci. 114:830–37 [Google Scholar]
  39. Debiec J, Ledoux JE. 2004. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129:267–72 [Google Scholar]
  40. DePoy L, Daut R, Brigman JL, MacPherson K, Crowley N. et al. 2013. Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. PNAS 110:14783–88 [Google Scholar]
  41. Deroche-Gamonet V, Belin D, Piazza PV. 2004. Evidence for addiction-like behavior in the rat. Science 305:1014–17 [Google Scholar]
  42. Dezfouli A, Piray P, Keramati MM, Ekhtiari H, Lucas C, Mokri A. 2009. A neurocomputational model for cocaine addiction. Neural Comput. 21:2869–93 [Google Scholar]
  43. Di Chiara G, Imperato A. 1988. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. PNAS 85:5274–78 [Google Scholar]
  44. Dias R, Robbins TW, Roberts AC. 1996. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72 [Google Scholar]
  45. Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR. et al. 2009. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325:621–25 [Google Scholar]
  46. Dickinson A. 1985. Actions and habits: the development of behavioural autonomy. Philos. Trans. R. Soc. B 308:67–78 [Google Scholar]
  47. Dickinson A, Balleine BB. 1994. Motivational control of goal-directed action. Anim. Learn. Behav. 22:1–18 [Google Scholar]
  48. Dickinson A, Wood N, Smith JW. 2002. Alcohol seeking by rats: action or habit?. Q. J. Exp. Psychol. B 55:331–48 [Google Scholar]
  49. Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W. et al. 2008. Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol. Psychiatry 63:301–8 [Google Scholar]
  50. Dilleen R, Pelloux Y, Mar AC, Molander A, Robbins TW. et al. 2012. High anxiety is a predisposing endophenotype for loss of control over cocaine, but not heroin, self-administration in rats. Psychopharmacology 222:89–97 [Google Scholar]
  51. Donnelly NA, Holtzman T, Rich PD, Nevado-Holgado AJ, Fernando AB. et al. 2014. Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome. PLOS ONE 9:10e111300 [Google Scholar]
  52. Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ. 2009. High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol. Psychiatry 65:851–56 [Google Scholar]
  53. Economidou D, Theobald DEH, Robbins TW, Everitt BJ, Dalley JW. 2012. Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction-time task through opponent actions in the shell and core sub-regions of the nucleus accumbens. Neuropsychopharmacology 37:2057–66 [Google Scholar]
  54. Ersche KD, Barnes A, Jones PS, Morein-Zamir S, Robbins TW, Bullmore ET. 2011a. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134:2013–24 [Google Scholar]
  55. Ersche KD, Bullmore ET, Craig KJ, Shabbir SS, Abbott S. et al. 2010. Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence. Arch. Gen. Psychiatry 67:632–44 [Google Scholar]
  56. Ersche KD, Fletcher PC, Lewis SJ, Clark L, Stocks-Gee G. et al. 2005. Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology 180:612–23 [Google Scholar]
  57. Ersche KD, Jones PS, Williams GB, Smith DG, Bullmore ET, Robbins TW. 2013a. Distinctive personality traits and neural correlates associated with stimulant drug use versus familial risk of stimulant dependence. Biol. Psychiatry 74:137–44 [Google Scholar]
  58. Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET. 2012a. Abnormal brain structure implicated in stimulant drug addiction. Science 335:601–4 [Google Scholar]
  59. Ersche KD, Roiser JP, Abbott S, Craig KJ, Mueller U. et al. 2011b. Response perseveration in stimulant dependence is associated with striatal dysfunction and can be ameliorated by a D-2/3 receptor agonist. Biol. Psychiatry 70:754–62 [Google Scholar]
  60. Ersche KD, Roiser JP, Robbins TW, Sahakian BJ. 2008. Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology 197:421–31 [Google Scholar]
  61. Ersche KD, Turton AJ, Chamberlain SR, Mueller U, Bullmore ET, Robbins TW. 2012b. Cognitive dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence. Am. J. Psychiatry 169:926–36 [Google Scholar]
  62. Ersche KD, Williams GB, Robbins TW, Bullmore ET. 2013b. Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr. Opin. Neurobiol. 23:615–24 [Google Scholar]
  63. Everitt BJ. 2014. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories—indications for novel treatments of addiction. Eur. J. Neurosci. 40:2163–82 [Google Scholar]
  64. Everitt BJ, Dickinson A, Robbins TW. 2001. The neuropsychological basis of addictive behaviour. Brain Res. Rev. 36:129–38 [Google Scholar]
  65. Everitt BJ, Robbins TW. 2005. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8:1481–89 [Google Scholar]
  66. Everitt BJ, Robbins TW. 2013. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37:1946–54 [Google Scholar]
  67. Fein G, Di Sclafani V, Cardenas VA, Goldmann H, Tolou-Shams M, Meyerhoff DJ. 2002. Cortical gray matter loss in treatment-naive alcohol dependent individuals. Alcohol Clin. Exp. Res. 26:558–64 [Google Scholar]
  68. Fernando AB, Economidou D, Theobald DEH, Zou MF, Newman AH. et al. 2012. Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists. Psychopharmacology 219:341–52 [Google Scholar]
  69. Fillmore MT, Rush CR, Hays L. 2005. Cocaine improves inhibitory control in a human model of response conflict. Exp. Clin. Psychopharmacol. 3:327–35 [Google Scholar]
  70. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A. et al. 2011. A selective role for dopamine in stimulus-reward learning. Nature 469:53–63 [Google Scholar]
  71. Flagel SB, Waselus M, Clinton SM, Watson SJ, Akil H. 2014. Antecedents and consequences of drug abuse in rats selectively bred for high and low response to novelty. Neuropharmacology 76:425–36 [Google Scholar]
  72. Friedman NP, Miyake A, Corley RP, Young SE, DeFries JC, Hewitt JK. 2006. Not all executive functions are related to intelligence. Psychol. Sci. 17:2172–79 [Google Scholar]
  73. Gallinat J. et al. 2006. Smoking and structural brain deficits: a volumetric MR investigation. Eur. J. Neurosci. 24:1744–50 [Google Scholar]
  74. Garavan H, Hester R, Whelan R. 2013. The neurobiology of successful abstinence. Curr. Opin. Neurobiol. 23:668–74 [Google Scholar]
  75. Garavan H, Kaufman JN, Hester R. 2008. Acute effects of cocaine on the neurobiology of cognitive control. Philos. Trans. R. Soc. B 363:3267–76 [Google Scholar]
  76. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L. et al. 2000. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am. J. Psychiatry 157:1789–98 [Google Scholar]
  77. Gawin FH, Kleber HD. 1986. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers: clinical observations. Arch. Gen. Psychiatry 43:107–13 [Google Scholar]
  78. Gillan CM, Apergis-Schoute AM, Morein-Zamir S, Urcelay GP, Sule A. et al. 2015. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am. J. Psychiatry 172:284–93 [Google Scholar]
  79. Glautier S, Drummond C, Remington B. 1994. Alcohol as an unconditioned stimulus in human classical conditioning. Psychopharmacology 116:360–68 [Google Scholar]
  80. Goldberg SR. 1973. Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. J. Pharmacol. Exp. Ther. 186:18–30 [Google Scholar]
  81. Goldstein RZ, Craig ADB, Bechara A, Garavan H, Childress AR. et al. 2009. The neurocircuitry of impaired insight in drug addiction. Trends Cogn. Sci. 13:372–80 [Google Scholar]
  82. Gottesman II, Gould TD. 2003. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160:636–45 [Google Scholar]
  83. Grant S, London ED, Newlin DB, Villemagne VL, Xiang L. et al. 1996. Activation of memory circuits during cue-elicited cocaine craving. PNAS 93:12040–45 [Google Scholar]
  84. Groman SM, James AS, Seu E, Crawford MA, Harpster SN, Jenstch JD. 2013. Monoamine levels within the orbitofrontal cortex and putamen interact to predict reversal learning performance. Biol. Psychiatry 73:756–62 [Google Scholar]
  85. Grueter BA, Rothwell PE, Malenka RC. 2012. Integrating synaptic plasticity and striatal circuit function in addiction. Curr. Opin. Neurobiol. 22:545–51 [Google Scholar]
  86. Haber SN, Fudge JL, McFarland NR. 2000. Striatonigral pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20:2369–82 [Google Scholar]
  87. Hall J, Parkinson JA, Connor TM, Dickinson A, Everitt BJ. 2001. Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci. 13:1984–92 [Google Scholar]
  88. Han JS, McMahan RW, Holland P, Gallagher M. 1997. The role of an amygdalo-nigrostriatal pathway in associative learning. J. Neurosci. 17:3913–19 [Google Scholar]
  89. Hellemans KG, Everitt BJ, Lee JL. 2006. Disrupting reconsolidation of conditioned withdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats. J. Neurosci. 26:12694–99 [Google Scholar]
  90. Hogarth L, Balleine BW, Corbit LH, Killcross S. 2013. Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Addict. Rev. 1282:12–24 [Google Scholar]
  91. Hogarth L, Dickinson A, Duka T. 2010. The associative basis of cue-elicited drug taking in humans. Psychopharmacology 208:337–51 [Google Scholar]
  92. Hyman SE, Malenka RC, Nestler EJ. 2006. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29:565–98 [Google Scholar]
  93. Ikemoto S, Wise RA. 2004. Mapping of chemical trigger zones for reward. Neuropharmacology 47:190–201 [Google Scholar]
  94. Ito R, Dalley JW, Robbins TW, Everitt BJ. 2002. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22:6247–53 [Google Scholar]
  95. Jang DP, Namkoong K, Kim JJ, Park S, Kim IY. et al. 2007. The relationship between brain morphometry and neuropsychological performance in alcohol dependence. Neurosci. Lett. 428:21–26 [Google Scholar]
  96. Jedynak JP, Uslaner JM, Esteban JA, Robinson TE. 2007. Methamphetamine-induced structural plasticity in the dorsal striatum. Eur. J. Neurosci. 25:847–53 [Google Scholar]
  97. Jentsch JD, Olausson P, De la Garza R, Taylor JR. 2002. Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology 26:183–90 [Google Scholar]
  98. Jentsch JD, Taylor JR. 1999. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–90 [Google Scholar]
  99. Jonkman S, Kenny PJ. 2013. Molecular, cellular, and structural mechanisms of cocaine addiction: a key role for microRNAs. Neuropsychopharmacology 38:198–211 [Google Scholar]
  100. Jonkman S, Pelloux Y, Everitt BJ. 2012a. Differential roles of the dorsolateral and midlateral striatum in punished cocaine seeking. J. Neurosci. 32:4645–50 [Google Scholar]
  101. Jonkman S, Pelloux Y, Everitt BJ. 2012b. Drug intake is sufficient, but conditioning is not necessary for the emergence of compulsive cocaine seeking after extended self-administration. Neuropsychopharmacology 37:1612–19 [Google Scholar]
  102. Kalivas PW, McFarland K. 2003. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 168:44–56 [Google Scholar]
  103. Kalivas PW, Volkow ND. 2005. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry 162:1403–13 [Google Scholar]
  104. Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M. et al. 2010. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328:1709–12 [Google Scholar]
  105. Kauer JA, Malenka RC. 2007. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 8:844–58 [Google Scholar]
  106. Kelly PH, Seviour PW, Iversen SD. 1975. Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res. 94:507–22 [Google Scholar]
  107. Koob GF. 2008. A role for brain stress systems in addiction. Neuron 59:11–34 [Google Scholar]
  108. Koob GF, LeMoal M. 1997. Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58 [Google Scholar]
  109. Koob GF, Volkow ND. 2010. Neurocircuitry of addiction. Neuropsychopharmacology 35:217–38 [Google Scholar]
  110. Lee JLC, Di Ciano P, Thomas KL, Everitt BJ. 2005. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801 [Google Scholar]
  111. Lee JLC, Everitt BJ. 2007. Reactivation-dependent amnesia: disrupting memory reconsolidation as a novel approach for the treatment of maladaptive memory disorders. Research and Perspectives in Neurosciences. Memories: Molecules and Circuits Y Christen, B Bontempi, AJ Silva 83–98 Paris: Fondation Ipsen [Google Scholar]
  112. Lee JLC, Everitt BJ, Thomas KL. 2004. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–43 [Google Scholar]
  113. Lee JLC, Gardner RJ, Butler VJ, Everitt BJ. 2009. D-cycloserine potentiates the reconsolidation of cocaine-associated memories. Learn. Mem. 16:82–85 [Google Scholar]
  114. Lee JLC, Milton AL, Everitt BJ. 2006a. Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J. Neurosci. 26:5881–87 [Google Scholar]
  115. Lee JLC, Milton AL, Everitt BJ. 2006b. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J. Neurosci. 26:10051–56 [Google Scholar]
  116. Leshner AI. 1997. Addiction is a brain disease, and it matters. Science 278:45–47 [Google Scholar]
  117. Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ. 2001. Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J. Neurosci. 21:2799–807 [Google Scholar]
  118. Lewis DJ. 1979. Psychobiology of active and inactive memory. Psychol. Bull. 86:1054–83 [Google Scholar]
  119. Leyton M. 2007. Conditioned and sensitized responses to stimulant drugs in humans. Prog. Neuropsychopharmacol. Biol. Psychiatry 31:1601–13 [Google Scholar]
  120. Leyton M, Vezina P. 2014. Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends Pharmacol. Sci. 35:268–76 [Google Scholar]
  121. Lingawi NW, Balleine BW. 2012. Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. J. Neurosci. 32:1073–81 [Google Scholar]
  122. Luescher C, Malenka RC. 2011. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650–63 [Google Scholar]
  123. MacKillop J, Lisman SA. 2008. Effects of a context shift and multiple context extinction on reactivity to alcohol cues. Exp. Clin. Psychopharmacol. 16:322–31 [Google Scholar]
  124. McNamara R, Dalley JW, Robbins TW, Everitt BJ, Belin D. 2010. Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacology 212:453–64 [Google Scholar]
  125. Mechtcheriakov S, Brenneis C, Egger K, Koppelstaetter F, Schocke M, Marksteiner J. 2007. A widespread distinct pattern of cerebral atrophy in patients with alcohol addiction revealed by voxel-based morphometry. J. Neurol. Neurosurg. Psychiatry 78:610–14 [Google Scholar]
  126. Merlo E, Milton AL, Goozee ZY, Theobald DE, Everitt BJ. 2014. Reconsolidation and extinction are dissociable and mutually exclusive processes: behavioral and molecular evidence. J. Neurosci. 34:2422–31 [Google Scholar]
  127. Meunier D, Ersche KD, Craig KJ, Fornito A, Merlo-Pich E. et al. 2012. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder. NeuroImage 59:1461–68 [Google Scholar]
  128. Miles FJ, Everitt BJ, Dickinson A. 2003. Oral cocaine seeking by rats: action or habit?. Behav. Neurosci. 117:927–38 [Google Scholar]
  129. Miller CA, Marshall JF. 2005. Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–84 [Google Scholar]
  130. Milton AL. 2013. Drink, drugs and disruption: memory manipulation for the treatment of addiction. Curr. Opin. Neurobiol. 23:706–12 [Google Scholar]
  131. Milton AL, Everitt BJ. 2010. The psychological and neurochemical mechanisms of drug memory reconsolidation: implications for the treatment of addiction. Eur. J. Neurosci. 31:2308–19 [Google Scholar]
  132. Milton AL, Lee JL, Butler VJ, Gardner R, Everitt BJ. 2008a. Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviors. J. Neurosci. 28:8230–37 [Google Scholar]
  133. Milton AL, Lee JL, Everitt BJ. 2008b. Reconsolidation of appetitive memories for both natural and drug reinforcement is dependent on β-adrenergic receptors. Learn. Mem. 15:88–92 [Google Scholar]
  134. Milton AL, Schramm MJ, Wawrzynski JR, Gore F, Oikonomou-Mpegeti F. et al. 2012. Antagonism at NMDA receptors, but not beta-adrenergic receptors, disrupts the reconsolidation of Pavlovian conditioned approach and instrumental transfer for ethanol-associated conditioned stimuli. Psychopharmacology 219:751–61 [Google Scholar]
  135. Mitchell MR, Weiss VG, Beas BS, Morgan D, Bizon JL. et al. 2014. Adolescent risk taking, cocaine self-administration and striatal dopamine signalling. Neuropsychopharmacology 39:955–62 [Google Scholar]
  136. Molander AC, Mar A, Norbury A, Steventon S, Moreno M. et al. 2011. High impulsivity predicting vulnerability to cocaine addiction in rats: some relationship with novelty preference but not novelty reactivity, anxiety or stress. Psychopharmacology 215:721–31 [Google Scholar]
  137. Monfils MH, Cowansage KK, Klann E, LeDoux JE. 2009. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324:951–55 [Google Scholar]
  138. Morein-Zamir S, Jones PS, Bullmore ET, Robbins TW, Ersche KD. 2013. Prefrontal hypoactivity associated with impaired inhibition in stimulant-dependent individuals but evidence for hyperactivation in their unaffected siblings. Neuropsychopharmacology 38:1945–53 [Google Scholar]
  139. Morein-Zamir S, Robbins TW. 2014. Fronto-striatal circuits in response inhibition: relevance to addiction. Brain Res. doi: 10.1016/j.brainres.2014.09.012
  140. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR. et al. 2002. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat. Neurosci. 5:169–74 [Google Scholar]
  141. Murray JE, Belin D, Everitt BJ. 2012. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 37:2456–66 [Google Scholar]
  142. Murray JE, Belin D, Everitt BJ. 2013. Basolateral and central nuclei of the amygdala are required for the transition to dorsolateral striatal control over habitual cocaine seeking. 51st Annu. Meet. Am. Coll. Neuropsychopharmacol. abstract M221, Hollywood, FL
  143. Myers KM, Carlezon WA Jr. 2012. D-cycloserine effects on extinction of conditioned responses to drug-related cues. Biol. Psychiatry 71:947–55 [Google Scholar]
  144. Nader K, Schafe GE, LeDoux JE. 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–26 [Google Scholar]
  145. Nader M, Czoty PW, Gould RW, Riddick NV. 2010. Characterising organism X environment interactions in non-human primate models of addiction: PET imaging studies of dopamine D2 receptors. The Neurobiology of Addiction: New Vistas TW Robbins, BJ Everitt, DJ Nutt 187–202 Oxford, UK: Oxford Univ. Press [Google Scholar]
  146. Naqvi NH, Bechara A. 2009. The hidden island of addiction; the insula. Trends Neurosci. 32:56–67 [Google Scholar]
  147. Naqvi NH, Bechara A. 2010. The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct. Funct. 214:435–50 [Google Scholar]
  148. Naqvi NH, Rudrauf D, Damasio H, Bechara A. 2007. Damage to the insula disrupts addiction to cigarette smoking. Science 315:531–34 [Google Scholar]
  149. Nelson A, Killcross S. 2006. Amphetamine exposure enhances habit formation. J. Neurosci. 26:3805–12 [Google Scholar]
  150. Nestler EJ. 2004. Molecular mechanisms of drug addiction. Neuropharmacology 47:24–32 [Google Scholar]
  151. O'Brien CP, Childress AR, Ehrman R, Robbins SJ. 1998. Conditioning factors in drug abuse: Can they explain compulsion?. J. Psychopharmacol. 12:15–22 [Google Scholar]
  152. O'Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. 2004. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–54 [Google Scholar]
  153. Olmstead MC, Lafond MV, Everitt BJ, Dickinson A. 2001. Cocaine seeking by rats is a goal-directed action. Behav. Neurosci. 115:394–402 [Google Scholar]
  154. Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M. et al. 2000. Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–26 [Google Scholar]
  155. Paulus MP, Stewart JL. 2014. Interoception and drug addiction. Neuropharmacology 76:342–50 [Google Scholar]
  156. Pelloux Y, Dilleen R, Economidou D, Theobald D, Everitt BJ. 2012. Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology 37:2505–14 [Google Scholar]
  157. Pelloux Y, Everitt BJ, Dickinson A. 2007. Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology 194:127–37 [Google Scholar]
  158. Pelloux Y, Murray JE, Everitt BJ. 2013. Differential roles of the prefrontal cortical subregions and basolateral amygdala in compulsive cocaine seeking and relapse after voluntary abstinence in rats. Eur. J. Neurosci. 38:3018–26 [Google Scholar]
  159. Perry JL, Carroll ME. 2008. The role of impulsive behavior in drug abuse. Psychopharmacology 200:1–26 [Google Scholar]
  160. Piazza PV, Deminière JM, Le Moal M, Simon H. 1989. Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–13 [Google Scholar]
  161. Piazza PV, Deroche V, Deminiere JM, Maccari S, LeMoal M, Simon H. 1993. Corticosterone in the range of stress levels possesses reinforcing properties: implications for sensation-seeking behaviors. PNAS 90:2411738–42 [Google Scholar]
  162. Piray P, Keramati MM, Dezfouli A, Lucas C, Mokri A. 2010. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach. Neural Comput. 22:2334–68 [Google Scholar]
  163. Porrino LJ, Hanlon CA, Gill KE, Beveridge TJR. 2010. Parallel studies of neural and cognitive impairment in humans and monkeys. The Neurobiology of Addiction: New Vistas TW Robbins, BJ Everitt, DJ Nutt 241–56 Oxford, UK: Oxford Univ. Press [Google Scholar]
  164. Price KL, Baker NL, McRae-Clark AL, Saladin ME, DeSantis SM. et al. 2013. A randomized, placebo-controlled laboratory study of the effects of D-cycloserine on craving in cocaine-dependent individuals. Psychopharmacology 226:739–46 [Google Scholar]
  165. Robbins TW, Ersche KD, Everitt BJ. 2008. Drug addiction and the memory systems of the brain. Addict. Rev. 1141:1–21 [Google Scholar]
  166. Robbins TW, Everitt BJ. 1999. Drug addiction: bad habits add up. Nature 398:567–70 [Google Scholar]
  167. Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD. 2012. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16:81–91 [Google Scholar]
  168. Roberts DC, Koob GF. 1982. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 17:901–4 [Google Scholar]
  169. Robinson ESJ, Eagle DM, Economidou D, Theobald DEH, Mar AC. et al. 2009. Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: specific deficits in “waiting” versus “stopping.”. Behav. Brain Res. 196:310–16 [Google Scholar]
  170. Robinson ESJ, Eagle DM, Mar AC, Bari A, Banerjee G. et al. 2008. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–37 [Google Scholar]
  171. Robinson TE, Berridge KC. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18:247–91 [Google Scholar]
  172. Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R. et al. 1999. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–39 [Google Scholar]
  173. Rogers RD, Robbins TW. 2001. Investigating the neurocognitive deficits associated with chronic drug misuse. Curr. Opin. Neurobiol. 11:250–57 [Google Scholar]
  174. Sanchez-Roige S, Baro V, Trick L, Peña-Oliver Y, Stephens DN, Duka T. 2014. Exaggerated waiting impulsivity associated with human binge drinking and high alcohol consumption in mice. Neuropsychopharmacology 39:2919–27 [Google Scholar]
  175. Saunders BT, Robinson TE. 2013. Individual variation in resisting temptation: implications for addiction. Neurosci. Biobehav. Rev. 37:1955–75 [Google Scholar]
  176. Schiller D, Monfils MH, Raio CM, Johnson DC, LeDoux JE, Phelps EA. 2010. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:49–54 [Google Scholar]
  177. Schmitzer-Torbert N, Apostolidis S, Amoa R, O'Rear C, Kaster M. et al. 2014. Post-training cocaine administration facilitates habit learning and requires the infralimbic cortex and dorsolateral striatum. Neurobiol. Learn. Mem. 118:105–12 [Google Scholar]
  178. Shiflett MW, Brown RA, Balleine BW. 2010. Acquisition and performance of goal-directed instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats. J. Neurosci. 30:2951–59 [Google Scholar]
  179. Sjoerds Z, de Wit S, van den Brink W, Robbins TW, Beekman ATF. et al. 2013. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl. Psychiatry 3:e337 [Google Scholar]
  180. Stasiewicz PR, Brandon TH, Bradizza CM. 2007. Effects of extinction context and retrieval cues on renewal of alcohol-cue reactivity among alcohol-dependent outpatients. Psychol. Addict. Behav. 21:244–48 [Google Scholar]
  181. Stewart J, de Wit H, Eikelboom R. 1984. The role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev. 91:251–68 [Google Scholar]
  182. Sullivan EV, Deshmukh A, De Rosa E, Rosenbloom MJ, Pfefferbaum A. 2005. Striatal and forebrain nuclei volumes: contribution to motor function and working memory deficits in alcoholism. Biol. Psychiatry 57:768–76 [Google Scholar]
  183. Taylor JR, Robbins TW. 1984. Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84:405–12 [Google Scholar]
  184. Thorn CA, Atallah H, Howe M, Graybiel AM. 2010. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66:781–95 [Google Scholar]
  185. Tiffany ST. 1990. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol. Rev. 97:147–68 [Google Scholar]
  186. Tronson NC, Taylor JR. 2007. Molecular mechanisms of memory reconsolidation. Nat. Rev. Neurosci. 8:262–75 [Google Scholar]
  187. Vanderschuren LJ, Di Ciano P, Everitt BJ. 2005. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J. Neurosci. 25:8665–70 [Google Scholar]
  188. Verdejo-Garcia A, Perez-Garcia M, Bechara A. 2006. Emotion, decision-making and substance dependence: a somatic-marker model of addiction. Curr. Neuropharmacol. 4:17–31 [Google Scholar]
  189. Verdejo-Garcia A, Bechara A. 2009. A somatic marker theory of addiction. Neurosci. Biobehav. Rev. 56:48–62 [Google Scholar]
  190. Vezina P, Leyton M. 2009. Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology 56:160–68 [Google Scholar]
  191. Volkow ND, Fowler JS. 2000. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex 10:318–25 [Google Scholar]
  192. Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F. 2007. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch. Neurol. 64:1575–79 [Google Scholar]
  193. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J. et al. 2006. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J. Neurosci. 26:6583–88 [Google Scholar]
  194. Vollstaedt-Klein S, Wichert S, Rabinstein J, Buehler M, Klein O. et al. 2010. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105:1741–49 [Google Scholar]
  195. Whelan R, Conrod PJ, Poline J-P, Lourdusamy A, Banaschewski T. et al. 2012. Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat. Neurosci 15:920–25 [Google Scholar]
  196. Wikler A. 1965. Conditioning factors in opiate addiction and relapse. Narcotics DI Willner, GG Kassenbaum 7–21 New York: McGraw-Hill [Google Scholar]
  197. Willuhn I, Burgeno LM, Everitt BJ, Phillips PEM. 2012. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. PNAS 109:20703–8 [Google Scholar]
  198. Wise RA. 2008. Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox. Res. 14:169–83 [Google Scholar]
  199. Xie C, Shao Y, Ma L, Zhai T, Ye E. et al. 2014. Imbalanced functional link between valuation networks in abstinent heroin-dependent subjects. Mol. Psychiatry 19:10–12 [Google Scholar]
  200. Xue Y-X, Luo Y-X, Wu P, Shi H-S, Xue L-F. et al. 2012. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 336:241–45 [Google Scholar]
  201. Yin HH, Knowlton BJ, Balleine BW. 2004. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19:181–89 [Google Scholar]
  202. Yin HH, Ostlund SB, Knowlton BJ, Balleine BW. 2005. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22:513–23 [Google Scholar]
  203. Zapata A, Minney VL, Shippenberg TS. 2010. Shift from goal-oriented to habitual cocaine seeking after prolonged experience in rats. J. Neurosci. 30:15457–63 [Google Scholar]
/content/journals/10.1146/annurev-psych-122414-033457
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error