1932

Abstract

Online interaction is now a regular part of daily life for a demographically diverse population of hundreds of millions of people worldwide. These interactions generate fine-grained time-stamped records of human behavior and social interaction at the level of individual events, yet are global in scale, allowing researchers to address fundamental questions about social identity, status, conflict, cooperation, collective action, and diffusion, both by using observational data and by conducting in vivo field experiments. This unprecedented opportunity comes with a number of methodological challenges, including generalizing observations to the offline world, protecting individual privacy, and solving the logistical challenges posed by “big data” and web-based experiments. We review current advances in online social research and critically assess the theoretical and methodological opportunities and limitations.

—Duncan Watts (2011, p. 266)

Loading

Article metrics loading...

/content/journals/10.1146/annurev-soc-071913-043145
2014-07-30
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/soc/40/1/annurev-soc-071913-043145.html?itemId=/content/journals/10.1146/annurev-soc-071913-043145&mimeType=html&fmt=ahah

Literature Cited

  1. Adamic L, Adar E. 2005. How to search a social network. Soc. Netw. 27:3187–203 [Google Scholar]
  2. Adamic LA, Glance N. 2005. The political blogosphere and the 2004 U.S. election: divided they blog. Proc. 3rd Int. Workshop Link Discov.36–43 New York: ACM [Google Scholar]
  3. Anderson CJ, Wasserman S, Crouch B. 1999. A p* primer: logit models for social networks. Soc. Netw. 21:137–66 [Google Scholar]
  4. Anthony DL, Smith SW, Williamson T. 2009. Reputation and reliability in collective goods: the case of the online encyclopedia Wikipedia. Ration. Soc. 21:3283–306 [Google Scholar]
  5. Aral S, Muchnik L, Sundararajan A. 2009. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl. Acad. Sci. USA 106:21544–49 [Google Scholar]
  6. Backstrom L, Dwork C, Kleinberg J. 2007. Wherefore art thou R3579X? Anonymized social networks, hidden patterns, and structural steganography. Proc. 16th Int. Conf. World Wide Web181–90 New York: ACM [Google Scholar]
  7. Backstrom L, Huttenlocher D, Kleinberg J, Lan X. 2006. Group formation in large social networks: membership, growth and evolution. Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.44–54 New York: ACM [Google Scholar]
  8. Backstrom L, Kleinberg J. 2014. Romantic partnerships and the dispersion of social ties: a network analysis of relationship status on Facebook. Proc. 17th ACM Conf. Comput. Support. Coop. Work (CSCW), Baltimore, MD, Feb. 15–19831–41 New York: ACM [Google Scholar]
  9. Bakshy E, Hofman JM, Mason WA, Watts DJ. 2011. Everyone's an influencer: quantifying influence on Twitter. Proc. 4th ACM Int. Conf. Web Search Data Min.65–74 New York: ACM [Google Scholar]
  10. Bakshy E, Rosenn I, Marlow C, Adamic L. 2012. The role of social networks in information diffusion. Proc. 21st Int. Conf. World Wide Web519–28 New York: ACM [Google Scholar]
  11. Blei DM, Ng AY, Jordan MI. 2003. Latent Dirichlet allocation. J. Mach. Learn. Res. 3:993–1022 [Google Scholar]
  12. Bond RM, Fariss CJ, Jones JJ, Kramer ADI, Marlow C. et al. 2012. A 61-million-person experiment in social influence and political mobilization. Nature 489:7415295–98 [Google Scholar]
  13. Borgatti SP, Halgin DS. 2011. On network theory. Organ. Sci. 22:1168–81 [Google Scholar]
  14. Boutyline A, Willer R. 2011. The social structure of political echo chambers: Ideology leads to asymmetries in online political communication networks Work. Pap., Univ. Calif. Berkeley. http://www.ocf.berkeley.edu/∼andrei/downloads/echo.pdf
  15. boyd d, Crawford K. 2012. Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 15:5662–79 [Google Scholar]
  16. boyd d, Ellison NB. 2007. Social network sites: definition, history, and scholarship. J. Comput.-Mediat. Commun. 13:1210–30 [Google Scholar]
  17. boyd d, Golder SA, Lotan G. 2010. Tweet, tweet, retweet: conversational aspects of retweeting on Twitter. Proc. 43rd Hawaii Int. Conf. Syst. Sci. (HICSS-43), Kauai, HI, Jan. 61–10 Piscataway, NJ: IEEE [Google Scholar]
  18. Brashears ME. 2013. Humans use compression heuristics to improve the recall of social networks. Sci. Rep. 3:1513 [Google Scholar]
  19. Burt RS. 1992. Structural Holes: The Social Structure of Competition Cambridge, MA: Harvard Univ. Press
  20. Burt RS. 1997. A note on social capital and network content. Soc. Netw. 19:355 [Google Scholar]
  21. Butts CT. 2009. Revisiting the foundations of network analysis. Science 325:414–16 [Google Scholar]
  22. Centola D. 2010. The spread of behavior in an online social network experiment. Science 329:1194–97 [Google Scholar]
  23. Centola D. 2011. An experimental study of homophily in the adoption of health behavior. Science 334:60601269–72 [Google Scholar]
  24. Centola D, Macy M. 2007. Complex contagions and the weakness of long ties. Am. J. Sociol. 113:3702–34 [Google Scholar]
  25. Cha M, Haddadi H, Benevenuto F, Gummadi KP. 2010. Measuring user influence in Twitter: the million follower fallacy. Proc. 4th Int. AAAI Conf. Weblogs Soc. Media10–17 Menlo Park, CA: AAAI [Google Scholar]
  26. Choi B, Kraut R, Fichman M. 2008. Matching people and groups: recruitment and selection in online games Work. Pap. No. 92, Human-Computer Interaction Inst., Carnegie Mellon Univ., Pittsburgh, PA. http://repository.cmu.edu/hcii/92
  27. Compton R, Jurgens D, Allen D. 2014. Geotagging one hundred million Twitter accounts with total variation minimization http://arxiv.org/abs/1404.7152
  28. Conover MD, Ratkiewicz J, Francisco M, Gonçalves B, Flammini A, Menczer F. 2011. Political polarization on Twitter. Proc. 5th Int. AAAI Conf. Weblogs Soc. Media89–96 Menlo Park, CA: AAAI [Google Scholar]
  29. Contractor N. 2013. Some assembly required: leveraging Web science to understand and enable team assembly. Philos. Trans. R. Soc. A 371:1987 [Google Scholar]
  30. Daft RL, Lengel RH. 1986. Organizational information requirements, media richness and structural design. Manag. Sci. 32:5554–71 [Google Scholar]
  31. Das S, Kramer A. 2013. Self-censorship on Facebook. Proc. 7th Int. AAAI Conf. Weblogs Soc. Media120–27 Palo Alto, CA: AAAI [Google Scholar]
  32. De Choudhury M, Mason WA, Hofman JM, Watts DJ. 2010. Inferring relevant social networks from interpersonal communication. Proc. 19th Int. Conf. World Wide Web (WWW2010)301–10 New York: ACM [Google Scholar]
  33. de Montjoye Y-A, Hidalgo CA, Verleysen M, Blondel VD. 2013. Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3:1376 [Google Scholar]
  34. Dean J, Ghemawat S. 2004. MapReduce: simplified data processing on large clusters. Proc. OSDI'04: 6th Symp. Oper. Syst. Des. Implement.137–49 Berkeley, CA: USENIX Assoc. [Google Scholar]
  35. Della Posta D, Shi Y, Macy MW. 2013. Why do liberals drink lattes? Work. Pap., Cornell Univ. Soc. Dyn. Lab., Ithaca, NY
  36. Digrazia J, McKelvey K, Bollen J, Rojas F. 2013. More tweets, more votes: social media as a quantitative indicator of political behavior. PLoS ONE 8:e70449 [Google Scholar]
  37. DiMaggio P, Hargittai E, Neuman WR, Robinson JP. 2001. Social implications of the Internet. Annu. Rev. Sociol. 27:307–36 [Google Scholar]
  38. Dodds PS, Muhamad R, Watts DJ. 2003. An experimental study of search in global social networks. Science 301:827–29 [Google Scholar]
  39. Duncan OD. 1966. Path analysis: sociological examples. Am. J. Sociol. 72:11–16 [Google Scholar]
  40. Eagle N, Macy MW, Claxton R. 2010. Network diversity and economic development. Science 328:1029–31 [Google Scholar]
  41. Emerson RM. 1962. Power-dependence relations. Am. Sociol. Rev. 27:131–41 [Google Scholar]
  42. Emerson RM. 1972. Exchange theory, part I and II. Sociological Theories in Progress II J Berger, M Zelditch, B Anderson 58–87 Boston: Houghton Mifflin [Google Scholar]
  43. Entwisle B, Faust K, Rindfuss RR, Kaneda T. 2007. Networks and contexts: variation in the structure of social ties. Am. J. Sociol. 112:51495–533 [Google Scholar]
  44. Erickson T. 1999. Persistent conversation: an introduction. J. Comput.-Mediat. Commun. 4:4 doi: 10.1111/j.1083-6101.1999.tb00105.x [Google Scholar]
  45. Feliciano C, Robnett B, Komaie G. 2009. Gendered racial exclusion among white internet daters. Soc. Sci. Res. 38:39–54 [Google Scholar]
  46. Fischer CS. 2009. The 2004 GSS finding of shrunken social networks: an artifact?. Am. Sociol. Rev. 74:4657–69 [Google Scholar]
  47. Flynn FJ, Reagans RE, Guillory L. 2010. Do you two know each other? Transitivity, homophily and the need for (network) closure. J. Personal. Soc. Psychol. 99:5855–69 [Google Scholar]
  48. Freeman LC. 1992. Filling in the blanks: a theory of cognitive categories and the structure of social affiliation. Soc. Psychol. Q. 55:2118–27 [Google Scholar]
  49. Friedman E, Resnick P. 2001. The social cost of cheap pseudonyms. J. Econ. Manag. Strategy 10:2173–99 [Google Scholar]
  50. Gayo-Avello D. 2012. No, you cannot predict elections with Twitter. IEEE Internet Comput. 16:691–94 [Google Scholar]
  51. Gilbert E, Karahalios K. 2009. Predicting tie strength with social media. Proc. 27th Int. Conf. Hum. Factors Comput. Syst.211–20 New York: ACM [Google Scholar]
  52. Gladwell M. 2000. The Tipping Point: How Little Things Can Make a Big Difference New York: Little, Brown
  53. Goffman E. 1959. The Presentation of Self in Everyday Life New York: Anchor
  54. Golder SA, Macy MW. 2011. Diurnal and seasonal mood vary with work, sleep and daylength across diverse cultures. Science 333:1878–81 [Google Scholar]
  55. Golder SA, Wilkinson D, Huberman BA. 2007. Rhythms of social interaction: messaging within a massive online network. Communities and Technologies 2007: Proceedings of the Third Communities and Technologies Conference C Steinfield, BT Pentland, M Ackerman, N Contractor 41–66 London: Springer
  56. Golder SA, Yardi S. 2010. Structural predictors of tie formation in Twitter: transitivity and mutuality. Proc. 2nd IEEE Int. Conf. Soc. Comput., Aug. 20–22, Minneapolis, MN88–95 Piscataway, NJ: IEEE [Google Scholar]
  57. González-Bailón S, Borge-Holthoefer J, Rivero A, Moreno Y. 2011. The dynamics of protest recruitment through an online network. Sci. Rep. 1:197 [Google Scholar]
  58. Granovetter M. 1973. The strength of weak ties. Am. J. Sociol. 78:1360–80 [Google Scholar]
  59. Grinter RE, Palen L. 2002. Instant messaging in teen life. Proc. 2002 ACM Conf. Comput.-Support. Coop. Work21–30 New York: ACM [Google Scholar]
  60. Hampton K, Wellman B. 2003. Neighboring in netville: how the Internet supports community and social capital in a wired suburb. City Community 2:4277–311 [Google Scholar]
  61. Hargittai E. 2010. Digital na(t)ives? Variation in Internet skills and uses among members of the net generation. Sociol. Inq. 80:192–113 [Google Scholar]
  62. Hechter M. 1988. Principles of Group Solidarity Berkeley: Univ. Calif. Press
  63. Henrich J, Heine SJ, Norenzayan A. 2010. The weirdest people in the world?. Behav. Brain Sci. 33:61–83 [Google Scholar]
  64. Herring SC. 1999. Interactional coherence in CMC. J. Comput.-Mediat. Commun. 4:4 doi: 10.1111/j.1083-6101.1999.tb00106.x [Google Scholar]
  65. Hollan J, Stornetta S. 1992. Beyond being there. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI'92)119–25 New York: ACM [Google Scholar]
  66. Homans GC. 1958. Social behavior as exchange. Am. J. Sociol. 63:6597 [Google Scholar]
  67. Homans GC. 1961. Social Behavior: Its Elementary Forms New York: Harcourt Brace Jovanovich
  68. Honeycutt C, Herring SC. 2009. Beyond microblogging: conversation and collaboration via Twitter. Proc. 42nd Hawaii Int. Conf. Syst. Sci.1–10 Washington, DC: IEEE [Google Scholar]
  69. Horrigan J. 2009. Home broadband adoption 2009 Rep. Pew Res. Cent., June 17, Pew Internet and American Life Project, Washington, DC. http://www.pewinternet.org/files/old-media/Files/Reports/2009/Home-Broadband-Adoption-2009.pdf
  70. Huberman BA. 2012. Sociology of science: Big data deserve a bigger audience. Nature 482:308 [Google Scholar]
  71. Huberman BA, Lock CH, Onculer A. 2004. Status as a valued resource. Soc. Psychol. Q. 67:1103 [Google Scholar]
  72. Imbens GW, Angrist JD. 1994. Identification and estimation of local average treatment effects. Econometrica 62:2467 [Google Scholar]
  73. Jernigan C, Mistree BFT. 2009. Gaydar: Facebook friendships expose sexual orientation. First Monday 14:10 [Google Scholar]
  74. Katz E, Lazarsfeld P. 1955. Personal Influence New York: Free Press
  75. Kollock P. 1999. The production of trust in online markets. Advances in Group Processes 16 EJ Lawler, SR Thye, MW Macy, HA Walker 99–123 Greenwich, CT: JAI [Google Scholar]
  76. Kossinets G, Watts DJ. 2006. Empirical analysis of an evolving social network. Science 311:88–90 [Google Scholar]
  77. Kraut R, Kiesler S. 2003. The social impact of Internet use. Psychol. Sci. Agenda Summer 8–10
  78. Krebs V. 2008. A network of books about recent US politics sold by the online bookseller Amazon.com. Case Stud., Orgnet.com. http://www.orgnet.com/divided.html
  79. Kriplean T, Beschastnikh I, McDonald DW. 2008. Articulations of WikiWork: uncovering valued work in Wikipedia through barnstars. CSCW 08: Proc. ACM 2008 Conf. Comput. Support. Coop. Work47–56 New York: ACM [Google Scholar]
  80. Kriplean T, Beschastnikh I, McDonald D, Golder SA. 2007. Community, consensus, coercion, control: CS*W or how policy mediates mass participation Presented at ACM Group 2007, Nov. 4–7, Sanibel Island, FL. http://www.acm.org/conferences/group/conferences/group07
  81. Kuhn TS. 1962. The Structure of Scientific Revolutions Chicago: Univ. Chicago Press, 3rd ed..
  82. Kwak H, Lee C, Park H, Moon S. 2010. What is Twitter, a social network or a news media?. Proc. 19th Int. Conf. World Wide Web (WWW'2010)591–600 New York: ACM [Google Scholar]
  83. Lazer D, Pentland A, Adamic L, Aral S, Barabási A-L. et al. 2009. Computational social science. Science 323:721–23 [Google Scholar]
  84. Leskovec J, Horvitz E. 2008. Planetary-scale views on a large instant-messaging network. Proc. 17th Int. Conf. World Wide Web915–24 New York: ACM [Google Scholar]
  85. Leskovec J, Huttenlocher D, Kleinberg J. 2010. Signed networks in social media. Proc. ACM Conf. Human Factors Comput. Syst. (CHI 2010)1361–70 New York: ACM [Google Scholar]
  86. Lewis K, Gonzalez M, Kaufman J. 2011. Social selection and peer influence in an online social network. Proc. Natl. Acad. Sci. USA 109:168–72 [Google Scholar]
  87. Lewis K, Kaufman J, Gonzalez M, Wimmer A, Christakis N. 2008. Tastes, ties, and time: a new social network dataset using Facebook.com. Soc. Netw. 30:330–42 [Google Scholar]
  88. Lovelace RVE, Tyler GL. 2012. On the discovery of the period of the Crab nebula pulsar. Observatory 132:3186–88 [Google Scholar]
  89. Lyman P, Wakeford N. 1999. Going into the (virtual) field. Am. Behav. Sci. 43:3359–76 [Google Scholar]
  90. Macy MW, Willer R. 2002. From factors to actors: computational sociology and agent-based modeling. Annu. Rev. Sociol. 28:1143–66 [Google Scholar]
  91. Manski CF. 1993. Identification of endogenous social effects: the reflection problem. Rev. Econ. Stud. 60:3531–42 [Google Scholar]
  92. Marsden PV. 1990. Network data and measurement. Annu. Rev. Sociol. 16:435–63 [Google Scholar]
  93. Mason W, Suri S. 2011. Conducting behavioral research on Amazon's Mechanical Turk. Behav. Res. Methods 44:1–23 [Google Scholar]
  94. Mason W, Watts DJ. 2009. Financial incentives and the performance of crowds. Proc. ACM SIGKDD Worksh. Human Comput. (HCOMP ‘09)77–85 New York: ACM [Google Scholar]
  95. Mayer A, Puller SL. 2008. The old boy (and girl) network: social network formation on university campuses. J. Public Econ. 92:329–47 [Google Scholar]
  96. McPherson M. 2004. A Blau space primer: prolegomenon to an ecology of affiliation. Ind. Corp. Change 13:1263–80 [Google Scholar]
  97. McPherson M, Smith-Lovin L, Cook JM. 2001. Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27:415–44 [Google Scholar]
  98. Menchik DA, Tian X. 2008. Putting social context into text: the semiotics of e-mail interaction. Am. J. Sociol. 114:2332–70 [Google Scholar]
  99. Milgram S. 1967. The small-world problem. Psychol. Today 1:161–67 [Google Scholar]
  100. Nie NH, Hillygus DS. 2002. The impact of internet use on sociability: time-diary findings. IT Soc. 1:11–20 [Google Scholar]
  101. Onnela J-P, Saramaki J, Hyvonen J, Szabó G, Lazer D. et al. 2007. Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 104:187332–36 [Google Scholar]
  102. Paccagnella L. 1997. Getting the seats of your pants dirty: strategies for ethnographic research on virtual communities. J. Comput.-Mediat. Commun. 3:1 doi: 10.1111/j.1083-6101.1997.tb00065.x [Google Scholar]
  103. Pang B, Lee L. 2008. Opinion mining and sentiment analysis. Found. Trends Inform. Retr. 2:1–21–135 [Google Scholar]
  104. Pennebaker JW, Francis ME, Booth RJ. 2001. Linguistic Inquiry and Word Count(LIWC): LIWC2001 Mahwah, NJ: Erlbaum [Google Scholar]
  105. Pinch TJ, Bijker WE. 1984. The social construction of facts and artefacts: or how the sociology of science and the sociology of technology might benefit each other. Soc. Stud. Sci. 14:3399–441 [Google Scholar]
  106. Podolny JM. 2001. Networks as pipes and prisms of the market. Am. J. Sociol. 107:133–60 [Google Scholar]
  107. Preece J, Shneiderman B. 2009. The reader-to-leader framework: motivating technology-mediated social participation. AIS Trans. Hum.-Comput. Interact. 1:113–32 [Google Scholar]
  108. Pustejovsky JE, Spillane JP. 2009. Question-order effects in social network name generators. Soc. Netw. 31:4221–29 [Google Scholar]
  109. Rainie L, Wellman B. 2012. Networked: The New Social Operating System Cambridge, MA: MIT Press
  110. Rand DG. 2012. The promise of Mechanical Turk: how online labor markets can help theorists run behavioral experiments. J. Theor. Biol. 299:172–79 [Google Scholar]
  111. Robinson JP. 2011. IT use and leisure time displacement. Inf. Commun. Soc. 14:4495–509 [Google Scholar]
  112. Robinson L. 2011. Information channel preferences and information opportunity structures. Inf. Commun. Soc. 14:4472–94 [Google Scholar]
  113. Robnett B, Feliciano C. 2011. Patterns of racial-ethnic exclusion by internet daters. Soc. Forces 89:3807–28 [Google Scholar]
  114. Romero DM, Meeder B, Kleinberg J. 2011. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. Proc. 20th Int. Conf. World Wide Web (WWW2011)695–704 New York: ACM [Google Scholar]
  115. Salganik MJ, Dodds PS, Watts DJ. 2006. Experimental study of inequality and unpredictability in an artificial cultural market. Science 311:854–56 [Google Scholar]
  116. Salganik MJ, Watts DJ. 2009. Web-based experiments for the study of collective social dynamics in cultural markets. Top. Cogn. Sci. 1:439–68 [Google Scholar]
  117. Sears DO. 1986. College sophomores in the laboratory: influences of a narrow data base on social psychology's view of human nature. J. Personal. Soc. Psychol. 51:3515–30 [Google Scholar]
  118. Shalizi CR, Thomas AC. 2011. Homophily and contagion are generically confounded in observational social network studies. Sociol. Methods Res. 40:2211–39 [Google Scholar]
  119. Shannon C. 1956. The bandwagon. IRE Trans. Inf. Theory 2:3 [Google Scholar]
  120. Smith A. 2011. 13% of online adults use Twitter and half of Twitter users access the service on a cell phone Rep. Pew Res. Cent., June 1, Pew Internet and American Life Project, Washington, DC. http://pewinternet.org/Reports/2011/Twitter-Update-2011.aspx
  121. Smith A. 2012. The best (and worst) of mobile connectivity Rep. Pew Res. Cent., Nov. 30, Pew Internet and American Life Project, Washington, DC. http://www.pewinternet.org/2012/11/30/the-best-and-worst-of-mobile-connectivity [Google Scholar]
  122. State B, Abrahao B, Cook K. 2012. From power to status in large scale online exchanges. Proc. 4th ACM Conf. Web Sci. (WebSci), June 22–24. New York: ACM [Google Scholar]
  123. Sunstein CR. 2001. Republic.com. Princeton, NJ: Princeton Univ. Press
  124. Taylor LS, Mendelsohn GA, Fiore AT, Cheshire C. 2011. “Out of my league”: a real-world test of the matching hypothesis. Personal. Soc. Psychol. Bull. 37:942–54 [Google Scholar]
  125. Traud AL, Kelsic ED, Mucha PJ, Porter MA. 2010. Comparing community structure to characteristics in online collegiate social networks. SIAM Rev. 53:526–43 [Google Scholar]
  126. Travers J, Milgram S. 1969. An experimental study of the small world problem. Sociometry 32:4425–43 [Google Scholar]
  127. Ugander J, Backstrom L, Marlow C, Kleinberg J. 2012. Structural diversity in social contagion. Proc. Natl. Acad. Sci. USA 109:165962–66 [Google Scholar]
  128. Ugander J, Karrer B, Backstrom L, Marlow C. 2011. The anatomy of the Facebook social graph http://arxiv.org/abs/1111.4503
  129. Van der Leij M, Goyal S. 2011. Strong ties in a small world. Rev. Netw. Econ. 10:21 [Google Scholar]
  130. Walther JB. 2007. Selective self-presentation in computer-mediated communication: hyperpersonal dimensions of technology, language, and cognition. Comput. Hum. Behav. 23:2538–57 [Google Scholar]
  131. Wang J, Huffaker DA, Treem JW, Fullerton L, Ahmad MA. et al. 2011. Focused on the prize: characteristics of experts in massive multiplayer online games. First Monday 16:8 http://firstmonday.org/ojs/index.php/fm/article/viewArticle/3672/3028 [Google Scholar]
  132. Watts DJ. 2004. The “new” science of networks. Annu. Rev. Sociol. 30:243–70 [Google Scholar]
  133. Watts DJ. 2011. Everything Is Obvious: How Common Sense Fails Us New York: Crown Business
  134. Weber I, Garimella VRK, Batayneh A. 2013. Secular versus Islamist polarization in Egypt on Twitter. Proc. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal. Min.290–97 New York: ACM [Google Scholar]
  135. Weber M. 1922. Economy and Society Berkeley: Univ. Calif. Press
  136. Wellman B, Hampton K. 1999. Living networked on and offline. Contemp. Sociol. 28:6648–54 [Google Scholar]
  137. Welser HT, Cosley D, Kossinets G, Lin A, Dokshin F. et al. 2011. Finding social roles in Wikipedia. Proc. 2011 iConf.122–29 New York: ACM [Google Scholar]
  138. Weng L, Menczer F, Ahn Y-Y. 2013. Virality prediction and community structure in social networks. Sci. Rep. 3:2522 [Google Scholar]
  139. Willer R, Flynn FJ, Zak S. 2012. Structure, identity, and solidarity: a comparative field study of generalized and direct exchange. Adm. Sci. Q. 57:1119–55 [Google Scholar]
  140. Wimmer A, Lewis K. 2010. Beyond and below racial homophily: ERG models of a friendship network documented on Facebook. Am. J. Sociol. 116:2583–642 [Google Scholar]
  141. Wright S. 1934. The method of path coefficients. Ann. Math. Stat. 5:3161–215 [Google Scholar]
  142. Xie W, Li C, Zhu F, Lim E-P, Gong X. 2012. When a friend in Twitter is a friend in life. Proc. 3rd Annu. ACM Web Sci. Conf.—WebSci ‘12344–47 New York: ACM [Google Scholar]
  143. Yardi S, Romero DM, Schoenebeck G, boyd d. 2010. Detecting spam in a Twitter network. First Monday 15:1 http://firstmonday.org/ojs/index.php/fm/article/view/2793/2431 [Google Scholar]
  144. Zachary WW. 1977. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33:452–73 [Google Scholar]
  145. Zizzo DJ. 2010. Experimenter demand effects in economic experiments. Exp. Econ. 13:175–98 [Google Scholar]
/content/journals/10.1146/annurev-soc-071913-043145
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error