1932

Abstract

This article reviews the literature that examines the potential, limitations, and consequences of robots and artificial intelligence (AI) in automation and augmentation across various disciplines. It presents key observations and suggestions from the literature review. Firstly, displacement effects from task automation continue to persist. However, one should not assume an unequivocally increasing efficacy of technology in automation or augmentation, especially given the declining productivity growth in high-income countries and some large emerging economies in recent decades. Jobs less likely to be negatively impacted are those that require diverse tasks, physical dexterity, tacit knowledge, or flexibility, or are protected by professional or trade associations. Despite countervailing effects, without policy intervention, automation and augmentation could widen inequality between social groups, labor and capital, and firms. Secondly, AI's promise in task automation and labor augmentation is mixed. AI tools can cause harm, and dissatisfaction and disengagement often arise from their opaqueness, errors, disregard for critical contexts, lack of tacit knowledge, and lack of domain expertise, as well as their demand for extra labor time and resources. The inadequate autonomy to override AI-based assessments further frustrates users who have to use these AI tools at work. Finally, the article calls for sociological research to specify conditions and mechanisms that ameliorate adverse consequences and enhance labor augmentation by embedding the study of automation and augmentation in concrete social and political contexts at multiple levels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-soc-090523-050708
2024-08-12
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/soc/50/1/annurev-soc-090523-050708.html?itemId=/content/journals/10.1146/annurev-soc-090523-050708&mimeType=html&fmt=ahah

Literature Cited

  1. Acemoglu D. 2021.. Harms of AI. NBER Work. Pap. 9247
    [Google Scholar]
  2. Acemoglu D, Autor D, Dorn D, Hanson GH, Price B. 2014.. Return of the Solow paradox? IT, productivity, and employment in US manufacturing. . Am. Econ. Rev. 104:(5):39499
    [Crossref] [Google Scholar]
  3. Acemoglu D, Johnson S. 2023.. Power and Progress: Our Thousand-Year Struggle over Technology and Prosperity. New York:: PublicAffairs
    [Google Scholar]
  4. Acemoglu D, Restrepo P. 2017.. Robots and jobs: evidence from US labor markets. NBER Work. Pap. 23285
    [Google Scholar]
  5. Acemoglu D, Restrepo P. 2018.. The race between man and machine: implications of technology for growth, factor shares, and employment. . Am. Econ. Rev. 108:(6):1488542
    [Crossref] [Google Scholar]
  6. Acemoglu D, Restrepo P. 2019a.. Artificial intelligence, automation, and work. . In The Economics of Artificial Intelligence: An Agenda, ed. A Agrawal, J Gans, A Goldfarb , pp. 197236. Chicago:: Univ. Chicago Press
    [Google Scholar]
  7. Acemoglu D, Restrepo P. 2019b.. Automation and new tasks: how technology changes labor demand. . J. Econ. Perspect. 33:(2):330
    [Crossref] [Google Scholar]
  8. Acemoglu D, Restrepo P. 2020.. The wrong kind of AI? Artificial intelligence and the future of labour demand. . Camb. J. Reg. Econ. Soc. 13:(1):2535
    [Crossref] [Google Scholar]
  9. Adler PS. 1992.. Introduction. . In Technology and the Future of Work, ed. PS Adler , pp. 314. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  10. Agrawal A, Gans J, Goldfarb A. 2019.. Introduction. . In The Economics of Artificial Intelligence: An Agenda, ed. A Agrawal, J Gans, A Goldfarb , pp. 120. Chicago:: Univ. Chicago Press
    [Google Scholar]
  11. Agrawal A, Gans J, Goldfarb A. 2023.. Do we want less automation?. Science 381:(6654):15558
    [Crossref] [Google Scholar]
  12. Attard-Frost B, De los Ríos A, Walters DR. 2023.. The ethics of AI business practices: a review of 47 AI ethics guidelines. . AI Ethics 3:(2):389406
    [Crossref] [Google Scholar]
  13. Attewell P. 1990.. What is skill?. Work Occ. 17:(4):42248
    [Crossref] [Google Scholar]
  14. Attewell P. 1992.. Skill and occupational changes in US manufacturing. . In Technology and the Future of Work, ed. PS Adler , pp. 4688. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  15. Autor D. 2015.. Why are there still so many jobs? The history and future of workplace automation. . J. Econ. Perspect. 29:(3):330
    [Crossref] [Google Scholar]
  16. Autor D, Dorn D, Katz LF, Patterson C, Van Reenen J. 2020.. The fall of the labor share and the rise of superstar firms. . Q. J. Econ. 135:(2):645709
    [Crossref] [Google Scholar]
  17. Autor D, Levy F, Murnane RJ. 2003.. The skill content of recent technological change: an empirical exploration. . Q. J. Econ. 118:(4):1279333
    [Crossref] [Google Scholar]
  18. Autor D, Salomons A. 2018.. Is automation labor share-displacing? Productivity growth, employment, and the labor share. Work. Pap. , Brookings Inst., Washington, DC:
    [Google Scholar]
  19. Bailey S, Pierides D, Brisley A, Weisshaar C, Blakeman T. 2020.. Dismembering organisation: the coordination of algorithmic work in healthcare. . Curr. Soc. 68:(4):54671
    [Crossref] [Google Scholar]
  20. Bainbridge L. 1983.. Ironies of automation. . Automatica 19:(6):77579
    [Crossref] [Google Scholar]
  21. Balliester T, Elsheikhi A. 2018.. The future of work: a literature review. Work. Pap. 29 , ILO Res. Dep., Int. Labour Organ., Geneva:
    [Google Scholar]
  22. Bauer H, Brandl F, Lock C, Reinhart G. 2018.. Integration of Industrie 4.0 in lean manufacturing learning factories. . Proc. Manuf. 23::14752
    [Google Scholar]
  23. Benjamin R. 2019.. Assessing risk, automating racism. . Science 366:(6464):42122
    [Crossref] [Google Scholar]
  24. Bijker WE. 2011.. Tacit and explicit knowledge. . Technol. Cult. 52:(4):80910
    [Crossref] [Google Scholar]
  25. Brandt L, Litwack J, Mileva E, Wang L, Zhang W, Zhao L. 2020.. China's productivity slowdown and future growth potential. Policy Res. Work. Pap. 9298 , World Bank, Washington, DC:
    [Google Scholar]
  26. Brayne S, Christin A. 2020.. Technologies of crime prediction: the reception of algorithms in policing and criminal courts. . Soc. Probl. 68:(3):60824
    [Crossref] [Google Scholar]
  27. Brooks C, Gherhes C, Vorley T. 2020.. Artificial intelligence in the legal sector: pressures and challenges of transformation. . Camb. J. Reg. Econ. Soc. 13:(1):13552
    [Crossref] [Google Scholar]
  28. Broussard M. 2018.. Artificial Unintelligence: How Computers Misunderstand the World. Cambridge, MA:: MIT Press
    [Google Scholar]
  29. Broussard M. 2023.. More Than a Glitch: Confronting Race, Gender, and Ability Bias in Tech. Cambridge, MA:: MIT Press
    [Google Scholar]
  30. Brynjolfsson E. 2022.. The Turing trap: the promise and peril of human-like artificial intelligence. . Daedalus 151:(2):27287
    [Crossref] [Google Scholar]
  31. Brynjolfsson E, Rock D, Syverson C. 2019.. Artificial intelligence and the modern productivity paradox: a clash of expectations and statistics. . In The Economics of Artificial Intelligence: An Agenda, ed. A Agrawal, J Gans, A Goldfarb , pp. 2360. Chicago:: Univ. Chicago Press
    [Google Scholar]
  32. Buolamwini J, Gebru T. 2018.. Gender shades: intersectional accuracy disparities in commercial gender classification. . Proc. Mach. Learn. Res. 81::7791
    [Google Scholar]
  33. Burrell J, Fourcade M. 2021.. The society of algorithms. . Annu. Rev. Sociol. 47::21337
    [Crossref] [Google Scholar]
  34. Chen Y, Stavropoulou C, Narasinkan R, Baker A, Scarbrough H. 2021.. Professionals’ responses to the introduction of AI innovations in radiology and their implications for future adoption: a qualitative study. . BMC Health Serv. Res. 21::813
    [Crossref] [Google Scholar]
  35. Cheng H, Jia R, Li D, Li H. 2019.. The rise of robots in China. . J. Econ. Perspect. 33:(2):7188
    [Crossref] [Google Scholar]
  36. Chiacchio F, Petropoulos G, Pichler D. 2018.. The impact of industrial robots on EU employment and wages: a local labour market approach. Work. Pap. 2018/02 , Breugel, Brussels:
    [Google Scholar]
  37. Chin J, Lin L. 2022.. Surveillance State: Inside China's Quest to Launch a New Era of Social Control. New York:: St. Martin's
    [Google Scholar]
  38. Ciuriak D. 2018.. The economics of data: implications for the data-driven economy. Work. Pap. , Cent. Int. Gov. Innov., Waterloo, ON, Can.:
    [Google Scholar]
  39. Clifton J, Glasmeier A, Gray M. 2020.. When machines think for us: the consequences for work and place. . Camb. J. Reg. Econ. Soc. 13:(1):323
    [Crossref] [Google Scholar]
  40. Collins HM. 2010.. Tacit and Explicit Knowledge. Chicago:: Univ. Chicago Press
    [Google Scholar]
  41. Dahlin E. 2019.. Are robots stealing our jobs?. Socius 5::114
    [Crossref] [Google Scholar]
  42. Dao MC, Das M, Koczan Z, Lian W. 2017a.. Understanding the downward trend in labor income shares. . In World Economic Outlook, April 2017: Gaining Momentum?, pp. 12172. Washington, DC:: Int. Monetary Fund
    [Google Scholar]
  43. Dao MC, Das M, Koczan Z, Lian W. 2017b.. Why Is Labor Receiving a Smaller Share of Global Income? Theory and Empirical Evidence. Washington, DC:: Int. Monetary Fund
    [Google Scholar]
  44. Dargan S, Kumar M, Ayyagari MR, Kumar G. 2020.. A survey of deep learning and its applications: a new paradigm to machine learning. . Arch. Comput. Methods Eng. 27::107192
    [Crossref] [Google Scholar]
  45. De Bruyn A, Viswanathan V, Beh YS, Brock JK, Von Wangenheim F. 2020.. Artificial intelligence and marketing: pitfalls and opportunities. . J. Interact. Mark. 51:(1):91105
    [Crossref] [Google Scholar]
  46. Delgado F, Yang S, Madaio M, Yang Q. 2021.. Stakeholder participation in AI: beyond ‘add diverse stakeholders and stir. .’ arXiv:2111.01122 [cs.AI]
  47. Dietvorst BJ, Simmons JP, Massey C. 2015.. Algorithm aversion: People erroneously avoid algorithms after seeing them err. . J. Exp. Psychol. Gen. 144:(1):11426
    [Crossref] [Google Scholar]
  48. Dorschel R. 2021.. Discovering needs for digital capitalism: the hybrid profession of data science. . Big Data Soc. 8:(2). https://doi.org/10.1177/20539517211040760
    [Crossref] [Google Scholar]
  49. Dressel J, Farid H. 2018.. The accuracy, fairness, and limits of predicting recidivism. . Sci. Adv. 4::eaao5580
    [Crossref] [Google Scholar]
  50. Ensmenger N. 2010.. The Computer Boys Take Over: Computers, Programmers, and the Politics of Technical Expertise. Cambridge, MA:: MIT Press
    [Google Scholar]
  51. Epstein S. 1995.. The construction of lay expertise: AIDS activism and the forging of credibility in the reform of clinical trials. . Sci. Technol. Hum. Values 20:(4):40837
    [Crossref] [Google Scholar]
  52. Eubanks V. 2018.. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York:: St. Martin's
    [Google Scholar]
  53. Eyal G, Pok G. 2011.. From a sociology of professions to a sociology of expertise. Paper presented at CAST Workshop on Security Expertise, Univ. Copenhagen, Copenhagen, Den.:, June 15–17
    [Google Scholar]
  54. Ferrer X, van Nuenen T, Such JM, Coté M, Criado N. 2021.. Bias and discrimination in AI: a cross-disciplinary perspective. . IEEE Technol. Soc. Mag. 40:(2):7280
    [Crossref] [Google Scholar]
  55. Furman J. 2019.. Should we be reassured if automation in the future looks like automation in the past?. In The Economics of Artificial Intelligence: An Agenda, ed. A Agrawal, J Gans, A Goldfarb , pp. 31728. Chicago:: Univ. Chicago Press
    [Google Scholar]
  56. Gerdon F, Bach RL, Kern C, Kreuter F. 2022.. Social impacts of algorithmic decision-making: a research agenda for the social sciences. . Big Dat. Soc. 9:(1). https://doi.org/10.1177/20539517221089305
    [Google Scholar]
  57. Gerstle G. 2022.. The Rise and Fall of the Neoliberal Order: America and the World in the Free Market Era. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  58. Goos M, Manning A. 2007.. Lousy and lovely jobs: the rising polarization of work in Britain. . Rev. Econ. Stat. 89:(1):11833
    [Crossref] [Google Scholar]
  59. Gordon RJ. 2016.. The Rise and Fall of American Growth: The US Standard of Living Since the Civil War. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  60. Gray ML, Suri S. 2019.. Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass. Boston:: Houghton Mifflin Harcourt
    [Google Scholar]
  61. Green B. 2021.. The contestation of tech ethics: a sociotechnical approach to technology ethics in practice. . J. Soc. Comput. 2:(3):20925
    [Crossref] [Google Scholar]
  62. Green B, Chen Y. 2019.. Disparate interactions: an algorithm-in-the-loop analysis of fairness in risk assessments. . In FAT* '19: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 9099. New York:: ACM
    [Google Scholar]
  63. Greene D, Hoffmann AL, Stark L. 2019.. Better, nicer, clearer, fairer: a critical assessment of the movement for ethical artificial intelligence and machine learning. . In Proceedings of the 52nd Hawaii International Conference on System Sciences, ed. TX Bui , pp. 212231. Honolulu, HI:: Univ. Hawai‘i at Mānoa
    [Google Scholar]
  64. Griesbach K, Reich A, Elliott-Negri L, Milkman R. 2019.. Algorithmic control in platform food delivery work. . Socius 5:. https://doi.org/10.1177/2378023119870041
    [Crossref] [Google Scholar]
  65. Haipeter T. 2020.. Digitalisation, unions and participation: the German case of ‘Industry 4.0. .’ Ind. Relat. J. 51:(3):24260
    [Crossref] [Google Scholar]
  66. Joyce K, Smith-Doerr L, Alegria S, Bell S, Cruz T, Hoffman SG, et al. 2021.. Toward a sociology of artificial intelligence: a call for research on inequalities and structural change. . Socius 7. https://doi.org/10.1177/2378023121999581
    [Crossref] [Google Scholar]
  67. Jussupow E, Spohrer K, Heinzl A. 2022.. Radiologists’ usage of diagnostic AI systems. . Bus. Inf. Syst. Eng. 64:(3):293309
    [Crossref] [Google Scholar]
  68. Jussupow E, Spohrer K, Heinzl A, Gawlitza J. 2021.. Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence. . Inf. Syst. Res. 32:(3):71335
    [Crossref] [Google Scholar]
  69. Katz LF, Murphy KM. 1992.. Changes in relative wages, 1963–1987: supply and demand factors. . Q. J. Econ. 107:(1):3578
    [Crossref] [Google Scholar]
  70. Kawakami A, Sivaraman V, Cheng HF, Stapleton L, Cheng Y, et al. 2022.. Improving human-AI partnerships in child welfare: understanding worker practices, challenges, and desires for algorithmic decision support. . In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. New York:: ACM
    [Google Scholar]
  71. Kellogg K, Valentine MA, Christin A. 2020.. Algorithms at work: the new contested terrain of control. . Acad. Manag. Ann. 14:(1):366410
    [Crossref] [Google Scholar]
  72. Kluttz DN, Mulligan DK. 2019.. Automated decision support technologies and the legal profession. . Berkeley Technol. Law J. 34:(3):85390
    [Google Scholar]
  73. Kshetri N. 2021.. Data labeling for the artificial intelligence industry: economic impacts in developing countries. . IT Prof. 23:(2):9699
    [Crossref] [Google Scholar]
  74. Lam A. 2000.. Tacit knowledge, organizational learning and societal institutions: an integrated framework. . Organ. Stud. 21:(3):487513
    [Crossref] [Google Scholar]
  75. Lebovitz S, Lifshitz-Assaf H, Levina N. 2022.. To engage or not to engage with AI for critical judgments: how professionals deal with opacity when using AI for medical diagnosis. . Organ. Sci. 33:(1):12648
    [Crossref] [Google Scholar]
  76. Lei YW. 2021.. Delivering solidarity: platform architecture and collective contention in China's platform economy. . Am. Sociol. Rev. 86:(2):279309
    [Crossref] [Google Scholar]
  77. Lei YW. 2022.. Upgrading China through automation: manufacturers, workers and the techno-developmental state. . Work Employ. Soc. 36:(6):107896
    [Crossref] [Google Scholar]
  78. Lei YW. 2023.. The Gilded Cage: Technology, Development, and State Capitalism in China. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  79. Madaio M, Egede L, Subramonyam H, Vaughan JW, Wallach H. 2022.. Assessing the fairness of AI systems: AI practitioners' processes, challenges, and needs for support. . In Proceedings of the ACM on Human-Computer Interaction, Vol. 6. New York:: ACM
    [Google Scholar]
  80. Mateescu A, Elish M. 2019.. AI in context: the labor of integrating new technologies. Rep. , Data Soc. Res. Inst., New York:. https://apo.org.au/node/217456
    [Google Scholar]
  81. McCarthy J. 2007.. What is artificial intelligence? Work. Pap. , Comput. Sci. Dep., Stanford Univ., Stanford, CA:. https://www.diochnos.com/about/McCarthyWhatisAI.pdf
    [Google Scholar]
  82. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. 2021.. A survey on bias and fairness in machine learning. . ACM Comput. Surv. 54:(6):115
    [Google Scholar]
  83. Metcalf J, Moss E. 2019.. Owning ethics: corporate logics, Silicon Valley, and the institutionalization of ethics. . Soc. Res. Int. Q. 86:(2):44976
    [Crossref] [Google Scholar]
  84. Mokyr J. 2014.. Secular stagnation? Not in your life. . In Secular Stagnation: Facts, Causes and Cures, ed. R Baldwin, C Teulings , pp. 8390. London:: Cent. Econ. Policy Res.
    [Google Scholar]
  85. Munn L. 2022a.. Automation Is a Myth. Stanford, CA:: Stanford Univ. Press
    [Google Scholar]
  86. Munn L. 2022b.. The uselessness of AI ethics. . AI Ethics 3::86977
    [Crossref] [Google Scholar]
  87. Noble DF. 1984.. Forces of Production: A Social History of Industrial Automation. New York:: Random House
    [Google Scholar]
  88. Noble SU. 2018.. Algorithms of Oppression. New York:: NYU Press
    [Google Scholar]
  89. Novokmet A, Tomičić Z, Vinković Z. 2022.. Pretrial risk assessment instruments in the US criminal justice system—what lessons can be learned for the European Union. . Int. J. Law Inform. Tech. 30:(1):122
    [Crossref] [Google Scholar]
  90. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. 2019.. Dissecting racial bias in an algorithm used to manage the health of populations. . Science 366:(6464):44753
    [Crossref] [Google Scholar]
  91. Pardo-Guerra JP. 2019.. Automating Finance: Infrastructures, Engineers, and the Making of Electronic Markets. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  92. Pfeiffer S. 2016.. Robots, Industry 4.0 and humans, or why assembly work is more than routine work. . Societies 6:(2):126
    [Crossref] [Google Scholar]
  93. Polanyi M. 1958.. Personal Knowledge: Towards a Post-Critical Philosophy. Chicago:: Univ. Chicago Press
    [Google Scholar]
  94. Polanyi M. 1967.. The Tacit Dimension. Garden City, NY:: Anchor
    [Google Scholar]
  95. Raj M, Seamans R. 2019.. Artificial intelligence, labor, productivity, and the need for firm-level data. . In The Economics of Artificial Intelligence: An Agenda, ed. A Agrawal, J Gans, A Goldfarb , pp. 55366. Chicago:: Univ. Chicago Press
    [Google Scholar]
  96. Rodgers I, Armour J, Sako M. 2023.. How technology is (or is not) transforming law firms. . Annu. Rev. Law Soc. Sci. 19::299317
    [Crossref] [Google Scholar]
  97. Rosenblat A. 2018.. Uberland: How Algorithms Are Rewriting the Rules of Work. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  98. RSNA (Radiol. Soc. N. Am.). 2022.. Radiology facing a global shortage. . RSNA News Blog, May 10. https://www.rsna.org/news/2022/may/global-radiologist-shortage
    [Google Scholar]
  99. Sako M, Qian M, Attolini J. 2022.. Future of professional work: evidence from legal jobs in Britain and the United States. . J. Prof. Organ. 9:(2):14369
    [Google Scholar]
  100. Schuetz PNK. 2021.. Fly in the face of bias: algorithmic bias in law enforcement's facial recognition technology and the need for an adaptive legal framework. . Law Inequal. 39::22154
    [Google Scholar]
  101. Shen J, Zhang CJP, Jiang B, Chen J, Song J, et al. 2019.. Artificial intelligence versus clinicians in disease diagnosis: systematic review. . JMIR Med. Inform. 7:(3):e10010
    [Crossref] [Google Scholar]
  102. Shestakofsky B. 2017.. Working algorithms: software automation and the future of work. . Work Occup. 44:(4):376423
    [Crossref] [Google Scholar]
  103. SIPAC (Suzhou Ind. Park Adm. Comm.). 2021.. From 2019 to 2021, the Ministry of Human Resources and Social Security released 4 batches of 56 new occupations for skilled personnel (continuously updated). Fact Sheet, Suzhou Ind. Park Adm. Comm., Suzhou, China:. http://www.sipac.gov.cn/ldhshbzj/tzgg/202105/9a5f774b821e4289a66aa9e992c3f0cb.shtml
    [Google Scholar]
  104. Spencer D, Slater G. 2020.. No automation please, we're British: technology and the prospects for work. . Camb. J. Reg. Econ. Soc. 13:(1):11734
    [Crossref] [Google Scholar]
  105. Spenner KI. 1990.. Skill: meanings, methods, and measures. . Work Occup. 17:(4):399421
    [Crossref] [Google Scholar]
  106. Stevenson MT, Doleac JL. 2022.. Algorithmic risk assessment in the hands of humans. IZA Discuss. Pap. 12853 , Inst. Labor Econ., Bonn, Ger:.
    [Google Scholar]
  107. Susskind RE, Susskind D. 2015.. The Future of the Professions: How Technology Will Transform the Work of Human Experts. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  108. Syverson C. 2017.. Challenges to mismeasurement explanations for the US productivity slowdown. . J. Econ. Perspect. 31:(2):1686
    [Crossref] [Google Scholar]
  109. Tassinari A, Maccarrone V. 2020.. Riders on the storm: workplace solidarity among gig economy couriers in Italy and the UK. . Work Employ. Soc. 34:(1):3554
    [Crossref] [Google Scholar]
  110. Trajtenberg M. 2019.. Artificial intelligence as the next GPT: a political-economy perspective. . In The Economics of Artificial Intelligence: An Agenda, ed. A Agrawal, J Gans, A Goldfarb , pp. 17586. Chicago:: Univ. Chicago Press
    [Google Scholar]
  111. Turner R. 2006.. From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of Digital Utopianism. Chicago:: Univ. Chicago Press
    [Google Scholar]
  112. Valentine M, Hinds R. 2022.. How algorithms change occupational expertise by prompting explicit articulation and testing of experts’ theories. Work. Pap. 2022 , Stanford Manag. Sci. Eng., Stanford, CA:
    [Google Scholar]
  113. Vallas SP. 2017.. Platform capitalism: What is at stake for workers?. New Labor Forum 28:(1):4859
    [Crossref] [Google Scholar]
  114. Van Reenen J. 2011.. Wage inequality, technology and trade: 21st-century evidence. . Labour Econ. 18:(6):73041
    [Crossref] [Google Scholar]
  115. Vogt G, König ASL. 2021.. Robotic devices and ICT in long-term care in Japan: their potential and limitations from a workplace perspective. . Contemp. Jpn. 35::27090
    [Crossref] [Google Scholar]
  116. Wajcman J. 2017.. Automation: Is it really different this time?. Br. J. Sociol. 68:(1):11927
    [Crossref] [Google Scholar]
  117. Zuboff S. 2019.. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. New York:: PublicAffairs
    [Google Scholar]
/content/journals/10.1146/annurev-soc-090523-050708
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error