The author describes the circumstances and opportunities that led him to higher education and to pursue a research career in plant biology. He acknowledges the important roles a few individuals played in guiding him in his career. His early work on flowering was followed by studies on the physiological roles and the metabolism of gibberellins and abscisic acid. He describes how collaborations and technical developments advanced his research from measuring hormones by bioassay to their identification and quantification by mass spectrometry and cloning of hormone biosynthetic genes


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Auldridge ME, McCarty DR, Klee HJ. 1.  2006. Plant carotenoid cleavage oxygenases and their apo-carotenoid products. Curr. Opin. Plant Biol. 9:315–21 [Google Scholar]
  2. Benfey PN, Mitchell-Olds T. 2.  2008. From genotype to phenotype: systems biology meets natural variation. Science 320:495–97 [Google Scholar]
  3. Bonner J. 3.  1994. Chapters from my life. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:1–24 [Google Scholar]
  4. Bonner J, Heftmann E, Zeevaart JAD. 4.  1963. Suppression of floral induction by inhibitors of steroid biosynthesis. Plant Physiol. 38:81–88 [Google Scholar]
  5. Bonner J, Zeevaart JAD. 5.  1962. Ribonucleic acid synthesis in the bud, an essential component of floral induction in Xanthium. Plant Physiol. 37:43–49 [Google Scholar]
  6. Chernys JT, Zeevaart JAD. 6.  2000. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol. 124:343–53 [Google Scholar]
  7. Cleland CF, Zeevaart JAD. 7.  1970. Gibberellins in relation to flowering and stem elongation in the long day plant Silene armeria. Plant Physiol. 46:392–400 [Google Scholar]
  8. 8. Cornell News Release, Sept. 30 2004. Biologists finally close in on ‘florigen’, the signal that causes plants to flower. http://www.news.cornell.edu/releases/Sept04/Florigen.snd.chron.html
  9. Cornish K, Zeevaart JAD. 9.  1984. Abscisic acid metabolism in relation to water stress and leaf age in Xanthium strumarium. Plant Physiol. 75:166–69 [Google Scholar]
  10. Creelman RA, Zeevaart JAD. 10.  1984. Incorporation of oxygen into abscisic acid and phaseic acid from molecular oxygen. Plant Physiol. 76:1029–35 [Google Scholar]
  11. de Zeeuw D. 11.  1954. De invloed van het blad op de bloei. Meded. Landbouwhogesch. Wageningen 54:11–44 [Google Scholar]
  12. Doorenbos J. 12.  1991. Susan Jacobus Wellensiek. Jaarb. Kon. Nederl. Akad. Wetensch.178–84 [Google Scholar]
  13. Gilmour SJ, Bleecker AB, Zeevaart JAD. 13.  1987. Partial purification of gibberellin oxidases from spinach leaves. Plant Physiol. 85:87–90 [Google Scholar]
  14. Gilmour SJ, Zeevaart JAD, Schwenen L, Graebe JE. 14.  1986. Gibberellin metabolism in cell-free extracts from spinach leaves in relation to photoperiod. Plant Physiol. 82:190–95 [Google Scholar]
  15. Graebe JE. 15.  1987. Gibberellin biosynthesis and control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 38:419–65 [Google Scholar]
  16. Hoffmann-Benning S, Gage DA, McIntosh L, Kende H, Zeevaart JAD. 16.  2002. Comparison of peptides in the phloem sap of flowering and nonflowering Perilla and lupine plants using microbore HPLC followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Planta 216:140–47 [Google Scholar]
  17. Kavon DL, Zeevaart JAD. 17.  1979. Simultaneous inhibition of translocation of photosynthate and of the floral stimulus by localized low-temperature treatment in the short-day plant Pharbitis nil. Planta 144:201–4 [Google Scholar]
  18. King RW, Zeevaart JAD. 18.  1973. Floral stimulus movement in Perilla and flower inhibition by noninduced leaves. Plant Physiol. 51:727–38 [Google Scholar]
  19. King RW, Zeevaart JAD. 19.  1974. Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol. 53:96–103 [Google Scholar]
  20. Lang A. 20.  1957. The effect of gibberellin upon flower formation. Proc. Natl. Acad Sci USA 43:709–17 [Google Scholar]
  21. Lang A. 21.  1980. Some recollections and reflections. Annu. Rev. Plant Physiol. 31:1–28 [Google Scholar]
  22. Lange T, Hedden P, Graebe JE. 22.  1994. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc. Natl. Acad. Sci. USA 91:8552–56 [Google Scholar]
  23. Lee DJ, Zeevaart JAD. 23.  2002. Differential regulation of RNA levels of gibberellin dioxygenases by photoperiod in spinach. Plant Physiol. 130:2085–94 [Google Scholar]
  24. Lee DJ, Zeevaart JAD. 24.  2005. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol. 138:243–54 [Google Scholar]
  25. Li Y, Walton DC. 25.  1990. Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves. Plant Physiol. 92:551–59 [Google Scholar]
  26. Lincoln RG, Mayfield DL, Cunningham A. 26.  1961. Preparation of a floral initiating extract from Xanthium. Science 133:756 [Google Scholar]
  27. Metzger JD, Zeevaart JAD. 27.  1980. Identification of six endogenous gibberellins in spinach shoots. Plant Physiol. 65:623–26 [Google Scholar]
  28. Metzger JD, Zeevaart JAD. 28.  1980. Effect of photoperiod on the levels of endogenous gibberellins in spinach as measured by combined gas chromatography-selected ion current monitoring. Plant Physiol. 66:844–46 [Google Scholar]
  29. Metzger JD, Zeevaart JAD. 29.  1982. Photoperiodic control of gibberellin metabolism in spinach. Plant Physiol. 69:287–91 [Google Scholar]
  30. Parry AD, Horgan R. 30.  1991. Carotenoids and abscisic acid (ABA) biosynthesis in higher plants. Physiol. Plant. 82:320–26 [Google Scholar]
  31. Phillips AL, Ward DA, Uknes S, Appleford NEJ, Lange T et al.31.  1995. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–57 [Google Scholar]
  32. Qin X, Zeevaart JAD. 32.  1999. The 9-cis-opoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. USA 96:15354–61 [Google Scholar]
  33. Qin X, Zeevaart JAD. 33.  2002. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol. 128:544–51 [Google Scholar]
  34. Rock CD, Zeevaart JAD. 34.  1991. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl. Acad. Sci. USA 88:7496–99 [Google Scholar]
  35. Schwartz SH, Léon-Kloosterziel KM, Koornneef M, Zeevaart JAD. 35.  1997. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114:161–66 [Google Scholar]
  36. Schwartz SH, Qin X, Zeevaart JAD. 36.  2001. Characterization of a novel carotenoid cleavage dioxygenase from plants. J. Biol. Chem. 276:25208–11 [Google Scholar]
  37. Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR. 37.  1997. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–74 [Google Scholar]
  38. Talon M, Koornneef M, Zeevaart JAD. 38.  1990. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc. Natl. Acad. Sci. USA 87:7983–87 [Google Scholar]
  39. Talon M, Koornneef M, Zeevaart JAD. 39.  1990. Accumulation of C19-gibberellins in the gibberellin-insensitive dwarf mutant gai of Arabidopsis thaliana (L.) Heynh. Planta 182:501–5 [Google Scholar]
  40. Talon M, Zeevaart JAD. 40.  1990. Gibberellins and stem growth as related to photoperiod in Silene armeria L. Plant Physiol. 92:1094–1100 [Google Scholar]
  41. Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR. 41.  1997. Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. USA 94:12235–40 [Google Scholar]
  42. Taylor HF, Burden RS. 42.  1972. Xanthoxin, a recently discovered plant growth inhibitor. Proc. R. Soc. London Ser. B 180:317–46 [Google Scholar]
  43. Taylor HF, Burden RS. 43.  1972. Preparation and metabolism of 2-[14C]-cis,trans-xanthoxin. J. Exp. Bot. 24:873–80 [Google Scholar]
  44. Turck F, Fornara F, Coupland G. 44.  2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59:573–94 [Google Scholar]
  45. Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M. 45.  2007. Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev. Plant Biol. 58:183–98 [Google Scholar]
  46. Wareing PF, Good J, Manuel J. 46.  1968. Some possible physiological roles of abscisic acid. Biochemistry and Physiology of Plant Growth Substances F Wightman, G Setterfield 1561–79 Ottawa: Runge Press [Google Scholar]
  47. Wright STC, Hiron RWP. 47.  1969. (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224:719–20 [Google Scholar]
  48. Wu K, Li L, Gage DA, Zeevaart JAD. 48.  1996. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol. 110:547–54 [Google Scholar]
  49. Xu Y-L, Li L, Wu K, Peeters AJM, Gage DA, Zeevaart JAD. 49.  1995. The GA5 locus of Arabidopsis thaliana encodes a multifunctional 20-oxidase: molecular cloning and functional expression. Proc. Natl. Acad. Sci. USA 92:6640–44 [Google Scholar]
  50. Yang SH, Zeevaart JAD. 50.  2006. Expression of 8′-hydroxylases in relation to leaf water relations and seed development in bean. Plant J. 47:675–86 [Google Scholar]
  51. Zeevaart JAD. 51.  1958. Flower formation as studied by grafting. Meded. Landbouwhogesch. Wageningen 58:31–88 [Google Scholar]
  52. Zeevaart JAD. 52.  1962. DNA multiplication as a requirement for expression of floral stimulus in Pharbitis nil. Plant Physiol. 37:296–304 [Google Scholar]
  53. Zeevaart JAD. 53.  1962. The juvenile phase in Bryophyllum daigremontianum. Planta 58:543–48 [Google Scholar]
  54. Zeevaart JAD. 54.  1966. Reduction of the gibberellin content of Pharbitis seeds by CCC and after-effects in the progeny. Plant Physiol. 41:856–62 [Google Scholar]
  55. Zeevaart JAD. 55.  1971. Effects of photoperiod on growth rate and endogenous gibberellins in the long-day rosette plant spinach. Plant Physiol. 47:821–27 [Google Scholar]
  56. Zeevaart JAD. 56.  1971. (+)-Abscisic acid content of spinach in relation to photoperiod and water stress. Plant Physiol. 48:86–90 [Google Scholar]
  57. Zeevaart JAD. 57.  1976. Physiology of flower formation. Annu. Rev. Plant Physiol. 27:321–48 [Google Scholar]
  58. Zeevaart JAD. 58.  1978. Phytohormones and flower formation. Phytohormones and Related Compounds: A Comprehensive Treatise DS Letham, PB Goodwin, TJV Higgins II291–327 Amsterdam: Elsevier [Google Scholar]
  59. Zeevaart JAD. 59.  1979. Perception, nature and complexity of transmitted signals. La Physiologie de la Floraison P Champagnat, R Jacques 28559–90 Paris: CNRS [Google Scholar]
  60. Zeevaart JAD. 60.  1980. Changes in the levels of abscisic acid and its metabolites in excised leaf blades of Xanthium strumarium during and after stress. Plant Physiol. 66:672–78 [Google Scholar]
  61. Zeevaart JAD. 61.  2006. Florigen coming of age after 70 years. Plant Cell 18:1783–89 [Google Scholar]
  62. Zeevaart JAD. 62.  2008. Leaf-produced floral signals. Curr. Opin. Plant Biol. 11:541–47 [Google Scholar]
  63. Zeevaart JAD, Boyer GL. 63.  1984. Accumulation and transport of abscisic acid and its metabolites in Ricinus and Xanthium. Plant Physiol. 74:934–39 [Google Scholar]
  64. Zeevaart JAD, Creelman RA. 64.  1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439–73 [Google Scholar]
  65. Zeevaart JAD, Gage DA, Talon M. 65.  1993. Gibberellin A1 is required for stem elongation in spinach. Proc. Natl. Acad. Sci. USA 90:7401–5 [Google Scholar]
  66. Zeevaart JAD, Heath TG, Gage DA. 66.  1989. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns. Plant Physiol. 91:1594–601 [Google Scholar]
  67. Zeevaart JAD, Lang A. 67.  1962. The relationship between gibberellin and floral stimulus in Bryophyllum daigremontianum. Planta 58:531–42 [Google Scholar]
  68. Zeevaart JAD, Lang A. 68.  1963. Suppression of floral induction in Bryophyllum daigremontianum by a growth retardant. Planta 59:509–17 [Google Scholar]
  69. Zeevaart JAD, Milborrow BV. 69.  1976. Metabolism of abscisic acid and the occurrence of epi-dihydrophaseic acid in Phaseolus vulgaris. Phytochemistry 15:493–500 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error