1932

Abstract

Perhaps in keeping with their enigmatic name, 14-3-3 proteins offer a seemingly bewildering array of opportunities for interaction with signal transduction pathways. In each organism there are many isoforms that can form both homo- and heterodimers, and many biochemical activities have been attributed to the 14-3-3 group. The potential for diversity—and also confusion—is high. The mammalian literature on 14-3-3 proteins provides an appropriate context to appreciate the potential roles of 14-3-3s in plant signal transduction pathways. In addition, functional and structural themes emerge when 14-3-3s are examined and compiled in ways that draw attention to their participation in protein phosphorylation and protein-protein interactions. These themes allow examination of plant 14-3-3s from two perspectives: the ways in which plant 14-3- 3s contribute to and extend ideas already described in animals, and the ways that plant 14-3-3s present unique contributions to the field. The crystal structure of an animal 14-3- 3 has been solved. When considered with the evolutionary stability of large segments of the 14-3-3 protein, the structure illuminates several aspects of 14-3-3 function. However, diversity in other regions of the 14-3-3s and their presence as multigene families offer many opportunities for cell-specific specialization of individual functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.arplant.47.1.49
1996-06-01
2024-06-12
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.arplant.47.1.49
Loading
/content/journals/10.1146/annurev.arplant.47.1.49
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error