Very large amounts of isoprene are emitted from vegetation, especially from mosses, ferns, and trees. This hydrocarbon flux to the atmosphere, roughly equal to the flux of methane, has a large effect on the oxidizing potential of the atmosphere. Isoprene emission results from de novo synthesis by the deoxyxylulose phosphate/methyl erythritol 4-phosphate pathway in plastids. Dimethylallyl pyrophosphate made by this pathway is converted to isoprene by isoprene synthase. Isoprene synthase activity in plants has a high pH optimum and requirement for Mg2+ that is consistent with its location inside chloroplasts. Isoprene emission costs the plant significant amounts of carbon, ATP, and reducing power. Researchers hypothesize that plants benefit from isoprene emission because it helps photosynthesis recover from short high-temperature episodes. The evolution of isoprene emission may have been important in allowing plants to survive the rapid temperature changes that can occur in air because of the very low heat capacity of isoprene relative to water.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error