Phosphorylation and dephosphorylation of a protein often serve as an “on-and-off” switch in the regulation of cellular activities. Recent studies demonstrate the involvement of protein phosphorylation in almost all signaling pathways in plants. A significant portion of the sequenced genome encodes protein kinases and protein phosphatases that catalyze reversible phosphorylation. For optimal regulation, kinases and phosphatases must strike a balance in any given cell. Only a very small fraction of the thousands of protein kinases and phosphatases in plants has been studied experimentally. Nevertheless, the available results have demonstrated critical functions for these enzymes in plant growth and development. While serine/threonine phosphorylation is widely accepted as a predominant modification of plant proteins, the function of tyrosine phosphorylation, despite its overwhelming importance in animal systems, had been largely neglected until recently when tyrosine phosphatases (PTPs) were characterized from plants. This review focuses on the structure, regulation, and function of protein phosphatases in higher plants.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error