Our understanding of the evolution of organic molecules, and their voyage from molecular clouds to the early solar system and Earth, has changed dramatically. Incorporating recent observational results from the ground and space, as well as laboratory simulation experiments and new methods for theoretical modeling, this review recapitulates the inventory and distribution of organic molecules in different environments. The evolution, survival, transport, and transformation of organics is monitored, from molecular clouds and the diffuse interstellar medium to their incorporation into solar system material such as comets and meteorites. We constrain gas phase and grain surface formation pathways to organic molecules in dense interstellar clouds, using recent observations with the Infrared Space Observatory (ISO) and ground-based radiotelescopes. The main spectroscopic evidence for carbonaceous compounds in the diffuse interstellar medium is discussed (UV bump at 2200 Å, diffuse interstellar bands, extended red emission, and infrared absorption and emission bands). We critically review the signatures and unsolved problemsrelated to the main organic components suggested to be present in the diffuse gas, such as polycyclic aromatic hydrocarbons (PAHs), fullerenes, diamonds, and carbonaceous solids. We also briefly discuss the circumstellar formation of organics around late-typestars.

In the solar system, space missions to comet Halley and observations of the bright comets Hyakutake and Hale-Bopp have recently allowed a reexamination of the organic chemistry of dust and volatiles in long-period comets. We review the advances in this area and also discuss progress being made in elucidating the complex organic inventory of carbonaceous meteorites. The knowledge of organic chemistry in molecular clouds, comets, and meteorites and their common link provides constraints for the processes that lead to the origin, evolution, and distribution of life in the Galaxy.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error