▪ Abstract 

Observation of cooling neutron stars can potentially provide information about the states of matter at supernuclear densities. We review physical properties important for cooling such as neutrino emission processes and superfluidity in the stellar interior, surface envelopes of light elements owing to accretion of matter, and strong surface magnetic fields. The neutrino processes include the modified Urca process and the direct Urca process for nucleons and exotic states of matter, such as a pion condensate, kaon condensate, or quark matter. The dependence of theoretical cooling curves on physical input and observations of thermal radiation from isolated neutron stars are described. The comparison of observation and theory leads to a unified interpretation in terms of three characteristic types of neutron stars: high-mass stars, which cool primarily by some version of the direct Urca process; low-mass stars, which cool via slower processes; and medium-mass stars, which have an intermediate behavior. The related problem of thermal states of transiently accreting neutron stars with deep crustal burning of accreted matter is discussed in connection with observations of soft X-ray transients. Observations imply that some stars cool more rapidly than can be explained on the basis of nonsuperfluid neutron star models cooling via the modified Urca process, whereas other star cool less rapidly. We describe possible theoretical models that are consistent with observations.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error