Ribonuclease P (RNase P) is the endoribonuclease that generates the mature 5′-ends of tRNA by removal of the 5′-leader elements of precursor-tRNAs. This enzyme has been characterized from representatives of all three domains of life (Archaea, Bacteria, and Eucarya) (1) as well as from mitochondria and chloroplasts. The cellular and mitochondrial RNase Ps are ribonucleoproteins, whereas the most extensively studied chloroplast RNase P (from spinach) is composed solely of protein. Remarkably, the RNA subunit of bacterial RNase P is catalytically active in vitro in the absence of the protein subunit (2). Although RNA-only activity has not been demonstrated for the archaeal, eucaryal, or mitochondrial RNAs, comparative sequence analysis has established that these RNAs are homologous (of common ancestry) to bacterial RNA. RNase P holoenzymes vary greatly in organizational complexity across the phylogenetic domains, primarily because of differences in the RNase P protein subunits: Mitochondrial, archaeal, and eucaryal holoenzymes contain larger, and perhaps more numerous, protein subunits than do the bacterial holoenzymes. However, that the nonbacterial RNase P RNAs retain significant structural similarity to their catalytically active bacterial counterparts indicates that the RNA remains the catalytic center of the enzyme.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Woese CR, Kandler O, Wheelis ML. 1990. Proc. Natl. Acad. Sci. USA 87:4576–79 [Google Scholar]
  2. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. 1983. Cell 35:849–57 [Google Scholar]
  3. Deutscher MP. 1984. CRC Crit. Rev. Biochem. 17:45–71 [Google Scholar]
  4. Söll D, RajBhandary UL. eds 1995. tRNA: Structure, Biosynthesis, and Function 572 Washington, DC: ASM Press
  5. Yarus M. 1993. FASEB 7:31–39 [Google Scholar]
  6. Smith D. 1995. In The Biological Chemistry of Magnesium, ed. JA Cowan 111–36 New York: VCH
  7. Schedl P, Primakoff P. 1973. Proc. Natl. Acad. Sci. USA 70:2091–95 [Google Scholar]
  8. Sakano H, Yamada S, Ikemura T, Shimura Y, Ozeki H. 1974. Nucleic Acids Res. 1:355–71 [Google Scholar]
  9. Lee JY, Rohlman CE, Molony LA, Engelke DR. 1991. Mol. Cell Biol. 11:721–30 [Google Scholar]
  10. Cherayil B, Krupp G, Schuchert P, Char S, Söll D. 1987. Gene 60:157–61 [Google Scholar]
  11. Altman S, Kirsebom L, Talbot S. 1993. FASEB J. 7:7–14 [Google Scholar]
  12. Pace NR, Brown JW. 1995. J. Bacteriol. 177:1919–28 [Google Scholar]
  13. Kirsebom LA. 1995. Mol. Microbiol. 17:411–20 [Google Scholar]
  14. Nolan JM, Pace NR. 1996. In Nucleic Acids and Molecular Biology, ed. F Eckstein, DMJ Lilley 109–28 Berlin: Springer-Verlag
  15. Miller DL, Martin NC. 1983. Cell 34:911–17 [Google Scholar]
  16. Sakamoto H, Kimura N, Nagawa F, Shimura Y. 1983. Nucleic Acids Res. 11:8237–51 [Google Scholar]
  17. LaGrandeur TE, Darr SC, Haas ES, Pace NR. 1993. J. Bacteriol. 175:5043–48 [Google Scholar]
  18. Bartkiewicz M, Gold H, Altman S. 1989. Genes Dev. 3:488–99 [Google Scholar]
  19. Reich C, Gardiner KJ, Olsen GJ, Pace B, Marsh TL, Pace NR. 1986. J. Biol. Chem. 261:7888–93 [Google Scholar]
  20. Reed RE, Baer MF, Guerrier-Takada C, Donis-Keller H, Altman S. 1982. Cell 30:627–36 [Google Scholar]
  21. Krupp G, Cherayil B, Frendewey D, Nishikawa S, Söll D. 1986. EMBO J. 5:1697–703 [Google Scholar]
  22. Lee JY, Engelke DR. 1989. Mol. Cell. Biol. 9:2536–43 [Google Scholar]
  23. Eder PS, Srinivasan A, Fishman MC, Altman S. 1996. J. Biol. Chem. 271:21031–36 [Google Scholar]
  24. Doria M, Carrara G, Calandra P, Tocchini-Valentini GP. 1991. Nucleic Acids Res. 19:315–20 [Google Scholar]
  25. Brown JW, Haas ES, James BD, Hunt DA, Pace NR. 1991. J. Bacteriol. 173:3855–63 [Google Scholar]
  26. Tranguch AJ, Engelke DR. 1993. J. Biol. Chem. 268:14045–55 [Google Scholar]
  27. Bult CJ, White O, Olsen GJ, Zhou LX, Fleischmann RD. et al. 1996. Science 27:1058–73 [Google Scholar]
  28. Shareck F, Biely P, Morosoli R, Kluepfel D. 1995. Gene 153:105–9 [Google Scholar]
  29. Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB. et al. 1997. Nature 387:493–97 [Google Scholar]
  30. Brown JW, Nolan JM, Haas ES, Rubio MAT, Major F, Pace NR. 1996. Proc. Natl. Acad. Sci. USA 93:3001–6 [Google Scholar]
  31. Altman S, Wesolowski D, Puranam RS. 1993. Genomics 18:418–22 [Google Scholar]
  32. Brown JW. 1997. Nucleic Acids Res. 25:263–64 [Google Scholar]
  33. Nieuwlandt DT, Haas ES, Daniels CJ. 1991. J. Biol. Chem. 266:5689–95 [Google Scholar]
  34. Haas ES, Armbruster DW, Vucson BM, Daniels CJ, Brown JW. 1996. Nucleic Acids Res. 24:1252–59 [Google Scholar]
  35. Shu HH, Wise CA, Clark-Walker GD, Martin NC. 1991. Mol. Cell Biol. 11:1662–67 [Google Scholar]
  36. Ragnini A, Grisanti P, Rinaldi T, Frontali L, Palleschi C. 1991. Curr. Genet. 19:169–74 [Google Scholar]
  37. Baum M, Cordier A, Schön A. 1996. J. Mol. Biol. 257:43–52 [Google Scholar]
  38. Wang MJ, Davis NW, Gegenheimer P. 1988. EMBO J. 7:1567–74 [Google Scholar]
  39. Gegenheimer P. 1996. Mol. Biol. Rep. 22:147–50 [Google Scholar]
  40. Guerrier-Takada C, Altman S. 1984. Science 223:285–86 [Google Scholar]
  41. Martin NC, Underbrink-Lyon K. 1981. Proc. Natl. Acad. Sci. USA 78:4743–47 [Google Scholar]
  42. Hollingsworth MJ, Martin NC. 1986. Mol. Cell. Biol. 6:1058–64 [Google Scholar]
  43. Sulo P, Groom KR, Wise C, Steffen M, Martin N. 1995. Nucleic Acids Res. 23:856–60 [Google Scholar]
  44. Pagan-Ramos E, Lee Y, Engelke DR. 1996. RNA 2:441–51 [Google Scholar]
  45. Pagan-Ramos E, Tranguch AJ, Kindelberger DW, Engelke DR. 1994. Nucleic Acids Res. 22:200–7 [Google Scholar]
  46. Woese CR, Pace NR. 1993. In The RNA World, ed. RF Gesteland, JF Atkins 91–117 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  47. Gutell RR. 1993. Curr. Opin. Struct. Biol. 3:313–22 [Google Scholar]
  48. Siegel RW, Banta AB, Haas ES, Brown JW, Pace NR. 1996. RNA 2:452–62 [Google Scholar]
  49. Forster AC, Altman S. 1990. Cell 62:407–9 [Google Scholar]
  50. Pagan-Ramos E, Lee Y, Engelke DR. 1996. RNA 2:1100–9 [Google Scholar]
  51. Chen J-L, Pace NR. 1997. RNA 3:557–60 [Google Scholar]
  52. Frank DN, Ellington AE, Pace NR. 1996. RNA 2:1179–88 [Google Scholar]
  53. Hardt W-D, Hartmann RK. 1996. J. Mol. Biol. 259:422–33 [Google Scholar]
  54. Woese CR. 1987. Microbiol. Rev. 51:221–71 [Google Scholar]
  55. Burgin AB, Pace NR. 1990. EMBO J. 9:4111–18 [Google Scholar]
  56. Nolan JM, Burke DH, Pace NR. 1993. Science 261:762–65 [Google Scholar]
  57. Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC, Pace NR. 1994. EMBO J. 13:3953–63 [Google Scholar]
  58. Oh B-K, Pace NR. 1994. Nucleic Acids Res. 22:4087–94 [Google Scholar]
  59. Harris ME, Kazantsev AV, Chen J-L, Pace NR. 1997. RNA 3:561–76 [Google Scholar]
  60. Gautheret D, Damberger SH, Gutell RR. 1995. J. Mol. Biol. 248:27–43 [Google Scholar]
  61. Gutell RR, Power A, Hertz GZ, Putz EJ, Stormo GD. 1992. Nucleic Acids Res. 20:5785–95 [Google Scholar]
  62. Jaeger L, Michel F, Westhof E. 1994. J. Mol. Biol. 236:1271–76 [Google Scholar]
  63. Costa M, Michel F. 1995. EMBO J. 14:1276–85 [Google Scholar]
  64. Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:111–13 [Google Scholar]
  65. Scott WG, Finch JT, Klug A. 1995. Cell 81:991–1002 [Google Scholar]
  66. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL. et al. 1996. Science 273:1678–85 [Google Scholar]
  67. Tallsjö A, Svard SG, Kufel J, Kirsebom LA. 1993. Nucleic Acids Res. 21:3927–33 [Google Scholar]
  68. Tanner MA, Cech TR. 1995. RNA 1:349–50 [Google Scholar]
  69. Massire C, Jaeger L, Westhof E. 1997. RNA 3:553–56 [Google Scholar]
  70. Westhof E, Altman S. 1994. Proc. Natl. Acad. Sci. USA 91:5133–37 [Google Scholar]
  71. Westhof E, Wesolowski D, Altman S. 1996. J. Mol. Biol. 258:600–13 [Google Scholar]
  72. Chen J-LC, Nolan JM, Harris ME, Pace NR. 1998. EMBO J. 17:1515–25 [Google Scholar]
  73. Harris ME, Pace NR. 1995. RNA 1:210–18 [Google Scholar]
  74. Smith D, Burgin AB, Haas ES, Pace NR. 1992. J. Biol. Chem. 267:2429–36 [Google Scholar]
  75. Smith D, Pace NR. 1993. Biochemistry 32:5273–81 [Google Scholar]
  76. Beebe JA, Fierke CA. 1994. Biochemistry 33:10294–304 [Google Scholar]
  77. Hardt WD, Schlegl J, Erdmann VA, Hartmann RK. 1995. J. Mol. Biol. 247:161–72 [Google Scholar]
  78. Tallsjö A, Kirsebom LA. 1993. Nucleic Acids Res. 21:51–57 [Google Scholar]
  79. Reich C, Olsen GJ, Pace B, Pace NR. 1988. Science 239:178–81 [Google Scholar]
  80. Hardt WD, Schlegl J, Erdmann VA, Hartmann RK. 1993. Nucleic Acids Res. 21:3521–27 [Google Scholar]
  81. Guerrier-Takada C, Altman S. 1993. Biochemistry 32:7152–61 [Google Scholar]
  82. Beebe JA, Kurz JC, Fierke CA. 1996. Biochemistry 36:10493–505 [Google Scholar]
  83. Pan T. 1995. Biochemistry 34:902–9 [Google Scholar]
  84. Zarrinkar PP, Wang J, Williamson JR. 1996. RNA 2:564–73 [Google Scholar]
  85. Warnecke JM, Furste JP, Hardt W, Erdmann VA, Hartmann RK. 1996. Proc. Natl. Acad. Sci. USA 93:8924–28 [Google Scholar]
  86. Surratt CK, Carter BJ, Payne RC, Hecht SM. 1990. J. Biol. Chem. 265:22513–19 [Google Scholar]
  87. Gardiner KJ, Marsh TL, Pace NR. 1985. J. Biol. Chem. 260:5415–19 [Google Scholar]
  88. Perreault JP, Altman S. 1992. J. Mol. Biol. 226:399–409 [Google Scholar]
  89. Kleineidam RG, Pitulle C, Sproat B, Krupp G. 1993. Nucleic Acids Res. 21:1097–1101 [Google Scholar]
  90. Eckstein F. 1985. Annu. Rev. Biochem. 54:367–402 [Google Scholar]
  91. Chen Y, Li XQ, Gegenheimer P. 1997. Biochemistry 36:2425–38 [Google Scholar]
  92. Hardt WD, Warnecke JM, Erdmann VA, Hartmann RK. 1995. EMBO J. 14:2935–44 [Google Scholar]
  93. Frank DN, Harris ME, Pace NR. 1994. Biochemistry 33:10800–8 [Google Scholar]
  94. Frank DN, Pace NR. 1997. Proc. Natl. Acad. Sci. USA. 94:14355–60 [Google Scholar]
  95. Chang S, Carbon J. 1975. J. Biol. Chem. 250:5542–55 [Google Scholar]
  96. Guthrie C. 1975. J. Mol. Biol. 95:529–47 [Google Scholar]
  97. Barrell BG, Seidman JG, Guthrie C, McClain WH. 1974. Proc. Natl. Acad. Sci. USA 71:413–16 [Google Scholar]
  98. Engelke DR, Gegenheimer P, Ableson J. 1985. J. Biol. Chem. 260:1271–79 [Google Scholar]
  99. Goodman HM, Olson MV, Hall BD. 1977. Proc. Natl. Acad. Sci. USA 74:5453–57 [Google Scholar]
  100. Schmidt O, Mao J, Ogden R, Beckmann J, Sakano H. et al. 1980. Nature 287:750–52 [Google Scholar]
  101. Mao J, Schmidt O, Söll D. 1980. Cell 21:509–16 [Google Scholar]
  102. Kline L, Nishikawa S, Söll D. 1981. J. Biol. Chem. 256:5058–63 [Google Scholar]
  103. Surratt CK, Lesnikowski Z, Schifman AL, Schmidt FJ, Hecht SM. 1990. J. Biol. Chem. 265:22506–12 [Google Scholar]
  104. McClain WH, Guerrier-Takada C, Altman S. 1987. Science 238:527–30 [Google Scholar]
  105. Schlegl J, Hardt WD, Erdmann VA, Hartmann RK. 1994. EMBO J. 13:4863–69 [Google Scholar]
  106. Hardt WD, Schlegl J, Erdmann VA, Hartmann RK. 1993. Biochemistry 32:13046–53 [Google Scholar]
  107. Kahle D, Wehmeyer U, Krupp G. 1990. EMBO J. 9:1929–37 [Google Scholar]
  108. Thurlow DL, Shilowski D, Marsh TL. 1991. Nucleic Acids Res. 19:85–91 [Google Scholar]
  109. Seidman JG, McClain WH. 1975. Proc. Natl. Acad. Sci. USA 72:1491–95 [Google Scholar]
  110. Schmidt FJ, Seidman JG, Bock RM. 1976. J. Biol. Chem. 251:2440–45 [Google Scholar]
  111. Guerrier-Takada C, McClain WH, Altman S. 1984. Cell 38:219–24 [Google Scholar]
  112. Green CJ, Vold BS. 1988. J. Biol. Chem. 263:652–57 [Google Scholar]
  113. Kirsebom LA, Svard SG. 1994. EMBO J. 13:4870–76 [Google Scholar]
  114. Easterwood TR, Harvey SC. 1997. RNA 3:577–85 [Google Scholar]
  115. Darr SC, Zito K, Smith D, Pace NR. 1992. Biochemistry 31:328–33 [Google Scholar]
  116. Haas ES, Brown JW, Pitulle C, Pace NR. 1994. Proc. Natl. Acad. Sci. USA 91:2527–31 [Google Scholar]
  117. Green CJ, Rivera-Leon R, Vold BS. 1996. Nucleic Acids Res. 24:1497–1503 [Google Scholar]
  118. Stark BC, Kole R, Bowman EJ, Altman S. 1978. Proc. Natl. Acad. Sci. USA 75:3717–21 [Google Scholar]
  119. Gardiner K, Pace NR. 1980. J. Biol. Chem. 255:7507–9 [Google Scholar]
  120. Hansen FG, Hansen EB, Atlung T. 1985. Gene 38:85–93 [Google Scholar]
  121. Ogasawara N, Moriya S, von Meyerburg K, Hansen FG, Yoshikawa H. 1985. EMBO J. 4:3345–50 [Google Scholar]
  122. Brown JW, Pace NR. 1992. Nucleic Acids Res. 20:1451–56 [Google Scholar]
  123. Peck-Miller KA, Altman S. 1991. J. Mol. Biol. 221:1–5 [Google Scholar]
  124. Liu F, Altman S. 1994. Cell 77:1093–1100 [Google Scholar]
  125. Gopalan V, Talbot SJ, Altman S. 1994. In RNA-Protein Interactions, ed. K Nagai, IW Mattaj 103–26 Oxford: IRL
  126. Lawrence N, Wesolowski D, Gold H, Bartkiewicz M, Guerrier-Takada C. et al. 1987. Cold Spring Harbor Symp. Quant. Biol. 52:233–38 [Google Scholar]
  127. Darr SC, Pace B, Pace NR. 1990. J. Biol. Chem. 265:12927–32 [Google Scholar]
  128. Jayanthi GP, Van TG. 1992. Arch. Biochem. Biophys. 296:264–70 [Google Scholar]
  129. Stathopoulos C, Kalpaxis DL, Drainas D. 1995. Eur. J. Biochem. 228:976–80 [Google Scholar]
  130. Altman S, Gold HA, Bartkiewicz M. 1988. In Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles, ed. M Birnstiel 183–95 New York: Springer-Verlag
  131. Zimmerly S, Drainas D, Sylvers LA, Söll D. 1993. Eur. J. Biochem. 217:501–7 [Google Scholar]
  132. Lygerou Z, Mitchell P, Petfalski E, Seraphin B, Tollervey D. 1994. Genes Dev. 8:1423–33 [Google Scholar]
  133. Dichtl B, Tollervey D. 1997. EMBO J. 16:417–29 [Google Scholar]
  134. Chu S, Zengel JM, Lindahl L. 1997. RNA 3:382–91 [Google Scholar]
  135. Lygerou Z, Pluk H, van Venrooij WJ, Seraphin B. 1996. EMBO J. 15:5936–48 [Google Scholar]
  136. Gold HA, Craft J, Hardin JA, Bartkiewicz M, Altman S. 1988. Proc. Natl. Acad. Sci. USA 85:5483–87 [Google Scholar]
  137. Yuan Y, Tan E, Reddy R. 1991. Mol. Cell Biol. 11:5266–74 [Google Scholar]
  138. Eder PS, Kekuda R, Stolc V, Altman S. 1997. Proc. Natl. Acad. Sci. USA 94:1101–6 [Google Scholar]
  139. Liu MH, Yuan Y, Reddy R. 1994. Mol. Cell. Biochem. 130:75–82 [Google Scholar]
  140. Morales MJ, Wise CA, Hollingsworth MJ, Martin NC. 1989. Nucleic Acids Res. 17:6865–82 [Google Scholar]
  141. Morales MJ, Dang YL, Lou YC, Sulo P, Martin NC. 1992. Proc. Natl. Acad. Sci. USA 89:9875–79 [Google Scholar]
  142. Dang YL, Martin NC. 1993. J. Biol. Chem. 268:19791–96 [Google Scholar]
  143. Yamaguchi-Shinozaki K, Shinozaki K, Sugiura M. 1987. FEBS Lett. 215:132–36 [Google Scholar]
  144. Wang MJ, Gegenheimer P. 1990. Nucleic Acids Res. 18:6625–31 [Google Scholar]
  145. Thomas BC. 1996. Structural and mechanistic differences between a protein and an RNA-containing RNase P. PhD thesis. Univ. Kansas, Lawrence 142 pp. [Google Scholar]
  146. Banta AB, Haas ES, Brown JW, Pace NR. 1992. Nucleic Acids Res. 20:911 [Google Scholar]
  147. Robertson HD, Altman S, Smith JD. 1972. J. Biol. Chem. 247:5243–51 [Google Scholar]
  148. Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68–74 [Google Scholar]
  149. Melton DA, Cortese R. 1979. Cell 18:1165–72 [Google Scholar]
  150. Melton DA, DeRobertis EM, Cortese R. 1980. Nature 284:143–48 [Google Scholar]
  151. Matera AG, Frey MR, Margelot K, Wolin SL. 1995. J. Cell. Biol. 129:1181–93 [Google Scholar]
  152. Lee B, Matera AG, Ward DC, Craft J. 1996. Proc. Natl. Acad. Sci. USA 93:11471–76 [Google Scholar]
  153. Lygerou Z, Allmang C, Tollervey D, Seraphin B. 1996. Science 272:268–70 [Google Scholar]
  154. Chamberlain JR, Pagan-Ramos E, Kindelberger DW, Engelke DR. 1996. Nucleic Acids Res. 24:3158–66 [Google Scholar]
  155. Bothwell ALM, Garber RL, Altman S. 1976. J. Biol. Chem. 251:7709–16 [Google Scholar]
  156. Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H. 1994. Proc. Natl. Acad. Sci. USA 91:9223–27 [Google Scholar]
  157. Zimmerly S, Gamulin V, Burkard U, Söll D. 1990. FEBS Lett. 271:189–93 [Google Scholar]
  158. Mamula MJ, Baer M, Craft J, Altman S. 1989. Proc. Natl. Acad. Sci. USA 86:8717–21 [Google Scholar]
  159. Doerson C, Guerrier-Takada C, Altman S, Attardi G. 1985. J. Biol. Chem. 260:5942–49 [Google Scholar]

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error