1932

Abstract

Base flipping is the phenomenon whereby a base in normal B-DNA is swung completely out of the helix into an extrahelical position. It was discovered in 1994 when the first co-crystal structure was reported for a cytosine-5 DNA methyltransferase binding to DNA. Since then it has been shown to occur in many systems where enzymes need access to a DNA base to perform chemistry on it. Many DNA glycosylases that remove abnormal bases from DNA use this mechanism. This review describes systems known to use base flipping as well as many systems where it is likely to occur but has not yet been rigorously demonstrated. The mechanism and evolution of base flipping are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.181
1998-07-01
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.181.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.181&mimeType=html&fmt=ahah

Literature Cited

  1. Pabo CO, Sauer RT. 1992. Annu. Rev. Biochem. 61:1053–95 [Google Scholar]
  2. Kim YC, Geiger JH, Hahn S, Sigler PB. 1993. Nature 365:512–20 [Google Scholar]
  3. Kim JL, Nikolov DB, Burley SK. 1993. Nature 365:520–27 [Google Scholar]
  4. Travers A. 1997. Curr. Biol. 7:252–54 [Google Scholar]
  5. Kim YC, Grable JC, Love R, Greene PJ, Rosenberg JM. 1990. Science 249:1307–9 [Google Scholar]
  6. Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS. et al. 1993. EMBO J. 12:1781–95 [Google Scholar]
  7. Cheng XD, Kumar S, Posfai J, Pflugrath JW, Roberts RJ. 1993. Cell 74:299–307 [Google Scholar]
  8. Cheng X, Kumar S, Klimasauskas S, Roberts RJ. 1993. Cold Spring Harbor Symp. Quant. Biol. 58:331–38 [Google Scholar]
  9. Klimasauskas S, Kumar S, Roberts RJ, Cheng XD. 1994. Cell 76:357–69 [Google Scholar]
  10. Kumar S, Cheng XD, Klimasauskas S, Mi S, Posfai J. et al. 1994. Nucleic Acids Res. 22:1–10 [Google Scholar]
  11. Reinisch KM, Chen L, Verdine GL, Lipscomb WN. 1995. Cell 82:143–53 [Google Scholar]
  12. Vassylyev DG, Kashiwagi T, Mikami Y, Ariyoshi M, Iwai S. et al. 1995. Structure 4:1381–85 [Google Scholar]
  13. Roberts RJ. 1995. Cell 82:9–12 [Google Scholar]
  14. Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA. 1996. Nature 384:87–92 [Google Scholar]
  15. Roberts RJ, Myers PA, Morrison A, Murray K. 1976. J. Mol. Biol. 103:199–208 [Google Scholar]
  16. Mann MB, Smith HO. 1979. In Proc. Conf. Transmethylation, ed. E Usdin, RT Borchardt, CR Creveling 483–92 New York: Elsevier
  17. O'Gara M, Klimasauskas S, Roberts RJ, Cheng XD. 1996. J. Mol. Biol. 261:634–45 [Google Scholar]
  18. O'Gara M, Roberts RJ, Cheng XD. 1996. J. Mol. Biol. 263:597–606 [Google Scholar]
  19. Kumar S, Horton JR, Jones GD, Walker RT, Roberts RJ, Cheng XD. 1997. Nucleic Acids Res. 25:2773–83 [Google Scholar]
  20. Cheng XD. 1995. Curr. Opin. Struct. Biol. 5:4–10 [Google Scholar]
  21. Cheng XD. 1995. Annu. Rev. Biophys. Biomol. Struct. 24:293–318 [Google Scholar]
  22. Klimasauskas S, Roberts RJ. 1995. Nucleic Acids Res. 23:1388–95 [Google Scholar]
  23. Beisler JA. 1978. J. Med. Chem. 21:204–8 [Google Scholar]
  24. Creusot F, Acs G, Christman JK. 1982. J. Biol. Chem. 257:2041–48 [Google Scholar]
  25. Wu JC, Santi DV. 1987. J. Biol. Chem. 262:4778–86 [Google Scholar]
  26. Yang AS, Shen J-C, Zingg J-M, Mi S, Jones PA. 1995. Nucleic Acids Res. 23:1380–87 [Google Scholar]
  27. Cheng XD, Blumenthal RM. 1996. Structure 4:639–45 [Google Scholar]
  28. Lange C, Wild C, Trautner TA. 1996. EMBO J. 15:1443–50 [Google Scholar]
  29. Mol CD, Arvai AS, Sanderson RJ, Slupphaug G, Kavli B. et al. 1995. Cell 82:701–8 [Google Scholar]
  30. Mol CD, Arvai AS, Slupphaug G, Kavli B, Alseth I. et al. 1995. Cell 80:869–78 [Google Scholar]
  31. Savva R, McAuley-Hecht K, Brown T, Pearl L. 1995. Nature 373:487–93 [Google Scholar]
  32. Savva R, Pearl LH. 1995. Nat. Struct. Biol. 373:752–57 [Google Scholar]
  33. Dodson ML, Michaels ML, Lloyd RS. 1994. J. Biol. Chem. 266:17631–39 [Google Scholar]
  34. McCullough AK, Scharer O, Verdine GL, Lloyd RS. 1996. 27132147–52
  35. Vassylyev DG, Morikawa K. 1996. Structure 4:1381–85 [Google Scholar]
  36. Vassylyev DG, Morikawa K. 1997. Curr. Opin. Struct. Biol. 7:103–9 [Google Scholar]
  37. Verdine GL, Bruner SD. 1997. Chem. Biol. 4:329–34 [Google Scholar]
  38. Cunningham RP. 1997. Mutat. Res. 383:189–96 [Google Scholar]
  39. Labahn J, Granzin J, Schluckebier G, Robinson DP, Jack WE. et al. 1994. Proc. Natl. Acad. Sci. USA 91:10957–61 [Google Scholar]
  40. Gong W, O'Gara M, Blumenthal RM, Cheng XD. 1997. Nucleic Acids Res. 25:2702–15 [Google Scholar]
  41. Park H-W, Kim S-T, Sancar A, Deisenhofer J. 1995. Science 268:1866–72 [Google Scholar]
  42. Thayer MM, Ahern H, Xing DX, Cunningham RP, Tainer JA. 1995. EMBO J. 14:4108–20 [Google Scholar]
  43. Yamagata Y, Kato M, Odawara K, Tokuno Y, Nakashima Y. et al. 1996. Cell 86:311–19 [Google Scholar]
  44. Labahn J, Scharer OD, Long A, Ezaz-Nikpay K, Verdine GL, Ellenberger TE. 1996. Cell 86:321–29 [Google Scholar]
  45. Mol CD, Kuo C-F, Thayer MM, Cunningham RP, Tainer JA. 1995. Nature 374:381–86 [Google Scholar]
  46. Vrielink A, Ruger W, Driessen HPC, Freemont PS. 1994. EMBO J. 13:3413–22 [Google Scholar]
  47. Moore MH, Gulbis JM, Dodson EJ, Demple B, Moody PCE. 1994. EMBO J. 13:1495–501 [Google Scholar]
  48. Schluckebier G, Labahn J, Granzin J, Schildkraut I, Saenger W. 1995. Gene 157:131–34 [Google Scholar]
  49. Schluckebier G, O'Gara M, Saenger W, Cheng XD. 1995. J. Mol. Biol. 247:16–20 [Google Scholar]
  50. Malone T, Blumenthal RM, Cheng XD. 1995. J. Mol. Biol. 253:618–32 [Google Scholar]
  51. Allan BW, Reich NO. 1996. Biochemistry 35:14757–62 [Google Scholar]
  52. Cal S, Connolly BA. 1997. J. Biol. Chem. 272:490–96 [Google Scholar]
  53. Sancar A. 1994. Biochemistry 33:2–9 [Google Scholar]
  54. Kuo CF, McRee DE, Fisher CL, O'Hadley SF, Cunningham RP, Tainer JA. 1992. Science 258:434–40 [Google Scholar]
  55. Nikolov DB, Hu SH, Lin J, Gasch A, Hoffmann A. et al. 1992. Nature 360:40–46 [Google Scholar]
  56. Oefner C, Suck D. 1986. J. Mol. Biol. 192:605–32 [Google Scholar]
  57. Gallinari P, Jiricny J. 1996. Nature 383:735–38 [Google Scholar]
  58. Subramanya HS, Doherty AJ, Ashford SR, Wigley DB. 1996. Cell 85:607–15 [Google Scholar]
  59. Guest CR, Hochstrasser RA, Sowers LC, Millar DP. 1991. Biochemistry 30:3271–79 [Google Scholar]
  60. Smith SS. 1994. Prog. Nucleic Acid Res. Mol. Biol. 49:65–111 [Google Scholar]
  61. Lipscomb LA, Zhou FX, Presnell SR, Woo RJ, Peek ME. et al. 1996. Biochemistry 35:2818–23 [Google Scholar]
  62. Hough RF, Bass BL. 1997. RNA 3:356–70 [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.181
Loading
/content/journals/10.1146/annurev.biochem.67.1.181
Loading

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error