1932

Abstract

The lumens of the endoplasmic reticulum and Golgi apparatus are the subcellular sites where glycosylation, sulfation, and phosphorylation of secretory and membrane-bound proteins, proteoglycans, and lipids occur. Nucleotide sugars, nucleotide sulfate, and ATP are substrates for these reactions. ATP is also used as an energy source in the lumen of the endoplasmic reticulum during protein folding and degradation. The above nucleotide derivatives and ATP must first be translocated across the membrane of the endoplasmic reticulum and/or Golgi apparatus before they can serve as substrates in the above lumenal reactions. Translocation of the above solutes is mediated for highly specific transporters, which are antiporters with the corresponding nucleoside monophosphates as shown by biochemical and genetic approaches. Mutants in mammals, yeast, and protozoa showed that a defect in a specific translocator activity results in selective impairments of the above posttranslational modifications, including loss of virulence of pathogenic protozoa. Several of these transporters have been purified and cloned. Experiments with yeast and mammalian cells demonstrate that these transporters play a regulatory role in the above reactions. Future studies will address the structure of the above proteins, how they are targeted to different organelles, their potential as drug targets, their role during development, and the possible occurrence of specific diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.49
1998-07-01
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.49.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.49&mimeType=html&fmt=ahah

Literature Cited

  1. Palade G. 1975. Science 189:347–58 [Google Scholar]
  2. Pryer NK, Wuestehube LJ, Schekman R. 1992. Annu. Rev. Biochem. 61:471–516 [Google Scholar]
  3. Katz FN, Rothman JE, Lingappa VR, Blobel G, Lodish HF. 1977. Proc. Natl. Acad. Sci. USA 74:3278–82 [Google Scholar]
  4. Lingappa VR, Lingappa JR, Prassad R, Ebner K, Blobel G. 1978. Proc. Natl. Acad. Sci. USA 75:2338–42 [Google Scholar]
  5. Kornfeld R, Kornfeld S. 1985. Annu. Rev. Biochem. 54:631–34 [Google Scholar]
  6. Abeijon C, Hirschberg CB. 1992. Trends Biochem. Sci. 17:31–36 [Google Scholar]
  7. Sousa MC, Ferrero-Garcia MA, Parodi AJ. 1992. Biochemistry 31:97–105 [Google Scholar]
  8. Hebert DN, Foelmer B, Helenius A. 1995. Cell 81:425–33 [Google Scholar]
  9. Abeijon C, Hirschberg CB. 1988. Proc. Natl. Acad. Sci. USA 85:1010–14 [Google Scholar]
  10. Quemeneur E, Guthapfel R, Gueguen P. 1994. J. Biol. Chem. 269:5485–88 [Google Scholar]
  11. Pfeffer SR, Rothman JE. 1987. Annu. Rev. Biochem. 56:835–51 [Google Scholar]
  12. Munro S, Pelham HRB. 1986. Cell 46:291–300 [Google Scholar]
  13. Braakman I, Helenius J, Helenius A. 1992. Nature 356:260–62 [Google Scholar]
  14. Neutra M, Leblond CP. 1966. J. Cell Biol. 30:137–50 [Google Scholar]
  15. Herscovics A. 1969. Biochem. J. 112:709–19 [Google Scholar]
  16. Coates SW, Gurney T, Sommers LW, Yeh M, Hirschberg CB. 1980. J. Biol. Chem. 255:9225–29 [Google Scholar]
  17. Muenster A, Eckhardt M, Potvin B, Muehlenhoff M, Stanley P. et al. 1997. Glycoconjugate J. 14:S134 [Google Scholar]
  18. Kuhn NJ, White A. 1976. Biochem. J. 154:243–44 [Google Scholar]
  19. Waldman BC, Rudnick G. 1990. Biochemistry 29:44–52 [Google Scholar]
  20. Perez M, Hirschberg CB. 1987. Methods Enzymol. 138:709–15 [Google Scholar]
  21. Capasso JM, Keenan TW, Abeijon C, Hirschberg CB. 1989. J. Biol. Chem. 264:5233–40 [Google Scholar]
  22. Fleischer B. 1983. J. Histochem. Cytochem. 32:1033–40 [Google Scholar]
  23. Carey DJ, Sommers LW, Hirschberg CB. 1980. Cell 19:597–605 [Google Scholar]
  24. Creek KE, Morre DJ. 1981. Biochim. Biophys. Acta 643:292–305 [Google Scholar]
  25. Deutscher SL, Nuwayhid N, Stanley P, Briles EIB, Hirschberg CB. 1984. Cell 39:295–99 [Google Scholar]
  26. Deutscher SL, Hirschberg CB. 1986. J. Biol. Chem. 261:96–100 [Google Scholar]
  27. Hanover JA, Lennarz WJ. 1982. J. Biol. Chem. 257:2787–94 [Google Scholar]
  28. Sommers LW, Hirschberg CB. 1982. J. Biol. Chem. 10811–17 [Google Scholar]
  29. Capasso JM, Hirschberg CB. 1984. Biochim. Biophys. Acta 777:133–39 [Google Scholar]
  30. Lepers A, Shaw L, Schneckenburger P, Cacan R, Verbert A, Schauer R. 1990. Eur. J. Biochem. 193:715–23 [Google Scholar]
  31. Milla ME, Hirschberg CB. 1989. Proc. Natl. Acad. Sci. USA 86:1786–90 [Google Scholar]
  32. Berninsone P, Eckhardt M, Gerardy-Schahn R, Hirschberg CB. 1997. J. Biol. Chem. 272:12616–19 [Google Scholar]
  33. Hayes BK, Varki A. 1993. J. Biol. Chem. 268:16155–69 [Google Scholar]
  34. Capasso JM, Hirschberg CB. 1984. Proc. Natl. Acad. Sci. USA 81:7051–55 [Google Scholar]
  35. Brandan E, Fleischer B. 1982. Biochemistry 21:4640–45 [Google Scholar]
  36. Brandan E, Fleischer B. 1981. Fed. Proc. 40:681 (Abstr [Google Scholar]
  37. Brandli AW, Hansson GC, Rodriguez-Boulan E, Simons K. 1988. J. Biol. Chem. 263:16283–90 [Google Scholar]
  38. Toma L, Pinhal MAS, Dietrich CP, Nader HB, Hirschberg CB. 1996. J. Biol. Chem. 271:3897–901 [Google Scholar]
  39. Yusuf HKM, Pohlentz G, Sandhoff K. 1983. Proc. Natl. Acad. Sci. USA 80:7075–79 [Google Scholar]
  40. Barthelson R, Roth S. 1985. Biochem. J. 225:67–75 [Google Scholar]
  41. Milla ME, Clairmont CA, Hirschberg CB. 1992. J. Biol. Chem. 267:103–7 [Google Scholar]
  42. Miura N, Ishida N, Hoshino M, Yamauchi M, Hara T. et al. 1996. J. Biochem. 120:236–41 [Google Scholar]
  43. Ishida N, Miura N, Yoshioka S, Kawakita M. 1996. J. Biochem. 120:1074–78 [Google Scholar]
  44. Ma D, Russell DG, Beverley SM, Turco SJ. 1997. J. Biol. Chem. 272:3799–805 [Google Scholar]
  45. Descoteaux A, Luo Y, Turco SJ, Beverley SM. 1995. Science 269:1869–72 [Google Scholar]
  46. Etchison JR, Freeze HH. 1996. Glycobiology 6:177–89 [Google Scholar]
  47. Tabuchi M, Tanaka N, Iwahara S, Takegawa K. 1997. Biochem. Biophys. Res. Commun. 232:121–25 [Google Scholar]
  48. Schwarz JK, Capasso JM, Hirschberg CB. 1984. J. Biol. Chem. 259:3554–59 [Google Scholar]
  49. Habuchi O, Conrad HE. 1985. J. Biol. Chem. 260:13102–8 [Google Scholar]
  50. Capasso JM, Hirschberg CB. 1984. J. Biol. Chem. 259:4263–66 [Google Scholar]
  51. Zaruba ME, Schwartz NB, Tennekoon GI. 1988. Biochem. Biophys. Res. Commun. 155:1271–77 [Google Scholar]
  52. Mandon E, Milla ME, Kempner E, Hirschberg CB. 1994. Proc. Natl. Acad. Sci. USA 91:10707–11 [Google Scholar]
  53. Ozeran JD, Westley J, Schwartz NB. 1996. Biochemistry 35:3685–94 [Google Scholar]
  54. Abeijon C, Orlean P, Robbins PW, Hirschberg CB. 1989. Proc. Natl. Acad. Sci. USA 86:6935–39 [Google Scholar]
  55. Berninsone P, Miret JJ, Hirschberg CB. 1994. J. Biol. Chem. 269:207–11 [Google Scholar]
  56. Abeijon C, Robbins PW, Hirschberg CB. 1996. Proc. Natl. Acad. Sci. USA 93:5963–68 [Google Scholar]
  57. Traynor AJ, Hall ET, Walker G, Miller WH, Melancon P, Kuchta RD. 1996. J. Med. Chem. 39:2894–99 [Google Scholar]
  58. Bossuyt X, Blanckaert N. 1995. Eur. J. Biochem. 223:981–88 [Google Scholar]
  59. Bossuyt X, Blanckaert N. 1995. Biochem. J. 305:321–28 [Google Scholar]
  60. Perez M, Hirschberg CB. 1985. J. Biol. Chem. 260:4671–78 [Google Scholar]
  61. Hayes BK, Freeze HH, Varki A. 1993. J. Biol. Chem. 268:16139–54 [Google Scholar]
  62. Abeijon C, Hirschberg CB. 1987. J. Biol. Chem. 262:4153–59 [Google Scholar]
  63. Hayes BK, Varki A. 1993. J. Biol. Chem. 268:16170–78 [Google Scholar]
  64. Puglielli L, Mandon E, Hirschberg CB. 1997. Glyconjugate J. 14:S8 (Abstr [Google Scholar]
  65. Nuwayhid N, Glaser JH, Johnson JC, Conrad HE, Hauser SC, Hirschberg CB. 1986. J. Biol. Chem. 261:12936–41 [Google Scholar]
  66. Kearns AE, Vertel BM, Schwartz NB. 1993. J. Biol. Chem. 268:11097–104 [Google Scholar]
  67. Vertel BM, Walters LM, Flay N, Kearns AE, Schwartz NB. 1993. J. Biol. Chem. 268:11105–12 [Google Scholar]
  68. Capasso JM, Keenan TW, Abeijon C, Hirschberg CB. 1989. J. Biol. Chem. 264:5233–40 [Google Scholar]
  69. Clairmont CA, DeMaio A, Hirschberg CB. 1992. J. Biol. Chem. 267:3983–90 [Google Scholar]
  70. Mayinger P, Meyer DI. 1993. EMBO J. 12:659–66 [Google Scholar]
  71. Mayinger P, Bankaitis VA, Meyer DI. 1995. J. Cell Biol. 131:1377–86 [Google Scholar]
  72. Kim SH, Shin SJ, Park JS. 1996. Biochemistry 35:5418–25 [Google Scholar]
  73. Hauser SC, Ziurys JC, Gollan JL. 1988. Biochim. Biophys. Acta 967:149–57 [Google Scholar]
  74. Berg CL, Radominska A, Lester R, Gollan JL. 1995. Gastroenterology 108:183–92 [Google Scholar]
  75. Bossuyt X, Blanckaert N. 1994. Biochem. J. 302:261–69 [Google Scholar]
  76. Bossuyt X, Blanckaert N. 1997. Biochem. J. 323:645–48 [Google Scholar]
  77. Perez M, Hirschberg CB. 1986. J. Biol. Chem. 260:6822–30 [Google Scholar]
  78. Vanstapel F, Blanckaert N. 1988. J. Clin. Invest. 82:1113–22 [Google Scholar]
  79. Stanley P. 1980. Am. Chem. Soc. Symp. Ser. B. 128:213–21 [Google Scholar]
  80. Stanley P. 1985. Mol. Cell. Biol. 5:923–29 [Google Scholar]
  81. Briles EB, Li E, Kornfeld S. 1977. J. Biol. Chem. 252:1107–16 [Google Scholar]
  82. Abeijon C, Mandon EC, Robbins PW, Hirschberg CB. 1996. J. Biol. Chem. 271:8851–54 [Google Scholar]
  83. Douglas RH, Ballou CE. 1982. Biochemistry 21:1561–70 [Google Scholar]
  84. Hirschberg CB, Snider MD. 1987. Annu. Rev. Biochem. 56:63–87 [Google Scholar]
  85. Kuhn NJ, White A. 1977. Biochem. J. 168:423–33 [Google Scholar]
  86. Novikoff AB, Goldfischer S. 1961. Proc. Natl. Acad. Sci. USA 47:802–10 [Google Scholar]
  87. Neville MC, Peaker M. 1979. J. Physiol. 290:59–67 [Google Scholar]
  88. Shillingford JM, Calvert DT, Beechey RB, Shennan DB. 1996. Exp. Physiol. 81:273–84 [Google Scholar]
  89. Yanagisawa K, Resnick D, Abeijon C, Robbins PW, Hirschberg CB. 1990. J. Biol. Chem. 265:19351–55 [Google Scholar]
  90. Abeijon C, Yanagisawa K, Mandon EC, Hausler A, Moremen K. et al. 1993. J. Cell Biol. 122:307–23 [Google Scholar]
  91. Rijcken WRP, Overdijk B, Van den Eijnden DH, Ferwerda W. 1995. Biochem. J. 305:865–70 [Google Scholar]
  92. Guillen E, Hirschberg CB. 1995. Biochemistry 34:5472–76 [Google Scholar]
  93. Eckhardt M, Muehlenhoff M, Bethe A, Gerardy-Schahn R. 1996. Proc. Natl. Acad. Sci. USA 93:7572–76 [Google Scholar]
  94. Cacan R, Villers C, Belard M, Kaiden A, Krag S, Verbert A. 1992. Glycobiology 2:127–36 [Google Scholar]
  95. Stafford FJ, Bonifacino JS. 1991. J. Cell Biol. 115:1225–36 [Google Scholar]
  96. Villers C, Cacan R, Mir A-M, Labiau O, Verbert A. 1994. Biochem. J. 298:135–42 [Google Scholar]
  97. Wiertz EJHJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. 1996. Cell 84:769–79 [Google Scholar]
  98. Suzuki T, Kitajima K, Inoue S, Inoue Y. 1995. Glycoconjugate J. 12:183–93 [Google Scholar]
  99. Römisch K, Ali BRS. 1997. Proc. Natl. Acad. Sci. USA 94:6730–34 [Google Scholar]
  100. Shepard SRP, Baird SJ, Hallinan T, Burchell B. 1989. Biochem. J. 259:617–20 [Google Scholar]
  101. Banhegyi G, Garzo T, Fulceri R, Benedetti A, Mandl J. 1993. FEBS Lett. 328:149–52 [Google Scholar]
  102. Banhegyi G, Csala M, Mandl J, Burchell A, Burchell B. et al. 1996. Biochem. J. Lett. 320:343–44 [Google Scholar]
  103. Zakim D, Dannenberg A. 1992. Biochem. Pharm. 43:1385–93 [Google Scholar]
  104. Shortle D, Haber JE, Botstein D. 1982. Science 217:371–73 [Google Scholar]
  105. Momburg F, Neefjes JJ, Hammerling GJ. 1994. Curr. Opinion Immunol. 6:32–37 [Google Scholar]
  106. Pasyk EA, Foskett KJ. 1997. J. Biol. Chem. 272:7746–51 [Google Scholar]
  107. Hucho F, Gorne-Tschelnokow U, Strecker A. 1994. Trends Biochem. Sci. 19:383–87 [Google Scholar]
  108. Gorne-Tschelnokow U, Strecker A, Kaduk C, Naumann D, Hucho F. 1994. EMBO J. 13:338–41 [Google Scholar]
  109. Yan RT, Maloney PC. 1995. Proc. Natl Acad. Sci. USA 92:5973–76 [Google Scholar]
  110. Kaback HR. 1997. Proc. Natl. Acad. Sci. USA 94:5539–43 [Google Scholar]
  111. Genick UK, Borgstahl GE, Ng K, Ren Z, Pradervand C. et al. 1997. Science 225:1471–75 [Google Scholar]
  112. Abeijon C, Chen L. 1997. Glycoconjugate J. 14:S128 (Abstr [Google Scholar]
  113. Olofsson S, Milla M, Hirschberg C, DeClercq E, Datema R. 1988. Virology 166:440–50 [Google Scholar]
  114. Olofsson S, Sjoblom I, Hellstrand K, Shugar D, Clairmont C, Hirschberg C. 1993. Arch. Virol. 128:241–56 [Google Scholar]
  115. Hall ET, Yan JP, Melancon P, Kuchta RD. 1994. J. Biol. Chem. 269:14355–58 [Google Scholar]
  116. Yan JP, Ilsley DD, Frohlick S, Street R, Hall ET. et al. 1995. J. Biol. Chem. 270:22836–41 [Google Scholar]
  117. Gahl WA, Basham N, Tietz F, Bernardini I, Schulman JD. 1982. Science 217:1263–64 [Google Scholar]
  118. Mancini GMS, deJonge HR, Galjaard H, Verheijen FM. 1989. J. Biol. Chem. 264:15247–54 [Google Scholar]
  119. Colley KJ. 1997. Glycobiology 7:1–13 [Google Scholar]
  120. Jackson MR, Nilsson T, Peterson PA. 1990. EMBO J. 9:3153–62 [Google Scholar]
  121. Townsley FM, Pelham HRB. 1994. Eur. J. Cell Biol. 64:211–16 [Google Scholar]
  122. Schröder S, Schimmöeller F, Singer-Krueger B, Riezman H. 1995. J. Cell. Biol. 131:895–912 [Google Scholar]
  123. Ioffe E, Stanley P. 1994. Proc. Natl. Acad. Sci. USA 91:728–32 [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.49
Loading
/content/journals/10.1146/annurev.biochem.67.1.49
Loading

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error