1932

Abstract

The nucleosome, which is the primary building block of chromatin, is not a static structure: It can adopt alternative conformations. Changes in solution conditions or changes in histone acetylation state cause nucleosomes and nucleosomal arrays to behave with altered biophysical properties. Distinct subpopulations of nucleosomes isolated from cells have chromatographic properties and nuclease sensitivity different from those of bulk nucleosomes. Recently, proteins that were initially identified as necessary for transcriptional regulation have been shown to alter nucleosomal structure. These proteins are found in three types of multiprotein complexes that can acetylate nucleosomes, deacetylate nucleosomes, or alter nucleosome structure in an ATP-dependent manner. The direct modification of nucleosome structure by these complexes is likely to play a central role in appropriate regulation of eukaryotic genes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.545
1998-07-01
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.545.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.545&mimeType=html&fmt=ahah

Literature Cited

  1. Owen-Hughes T, Workman JL. 1994. Crit. Rev. Eukaryot. Gene Exp. 4:403–41 [Google Scholar]
  2. Felsenfeld G. 1992. Nature 355:219–24 [Google Scholar]
  3. Imbalzano AN, Kwon H, Green MR, Kingston RE. 1994. Nature 370:481–85 [Google Scholar]
  4. Clark DJ, Felsenfeld G. 1992. Cell 71:11–22 [Google Scholar]
  5. Izban MG, Luse DS. 1992. J. Biol. Chem. 267:13647–55 [Google Scholar]
  6. Chang CH, Luse DS. 1997. J. Biol. Chem. 272:23427–34 [Google Scholar]
  7. Studitsky VM, Clark DJ, Felsenfeld G. 1995. Cell 83:19–27 [Google Scholar]
  8. Studitsky VM, Clark DJ, Felsenfeld G. 1994. Cell 76:371–82 [Google Scholar]
  9. Lorch Y, LaPointe JW, Kornberg RD. 1987. Cell 49:203–10 [Google Scholar]
  10. Olins AL, Olins DE. 1974. Science 183:330–32 [Google Scholar]
  11. Olins AL, Carlson D, Olins DE. 1975. J. Cell Biol. 64:528–37 [Google Scholar]
  12. Oudet P, Gross-Bellard M, Chambon P. 1975. Cell 4:281–300 [Google Scholar]
  13. Woodcock CLF. 1973. J. Cell Biol. 59:A368 [Google Scholar]
  14. Hewish DR, Burgoyne LA. 1973. Biochem. Biophys. Res. Commun. 52:504–10 [Google Scholar]
  15. Noll M. 1974. Nature 251:249–51 [Google Scholar]
  16. Sahasrabuddhe CG, Van Holde KE. 1974. J. Biol. Chem. 249:152–56 [Google Scholar]
  17. Kornberg RD, Thomas JO. 1974. Science 184:865–68 [Google Scholar]
  18. Kornberg RD. 1974. Science 184:868–71 [Google Scholar]
  19. Van Holde K, Zlatanova J, Arents G, Moudrianakis E. 1995. In Chromatin Structure and Gene Expression, ed. SCR Elgin 1–21 Cambridge, UK: Oxford Univ. Press
  20. Simpson RT. 1978. Biochemistry 17:5524–31 [Google Scholar]
  21. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Nature 389:251–60 [Google Scholar]
  22. Richmond TJ, Finch JT, Rhodes D, Klug A. 1984. Nature 311:532–37 [Google Scholar]
  23. Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN. 1991. Proc. Natl. Acad. Sci. USA 88:10148–52 [Google Scholar]
  24. Camerini-Otero RD, Sollner-Webb B, Felsenfeld G. 1976. Cell 8:333–47 [Google Scholar]
  25. Sollner-Webb B, Camerini-Otero RD, Felsenfeld G. 1976. Cell 9:179–93 [Google Scholar]
  26. Eickbush TH, Moudrianakis EN. 1978. Biochemistry 17:4955–64 [Google Scholar]
  27. Arents G, Moudrianakis EN. 1995. Proc. Natl. Acad. Sci. USA 92:11170–74 [Google Scholar]
  28. Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. 1995. Nucleic Acids Res. 23:2685–91 [Google Scholar]
  29. Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A. et al. 1996. Nature 380:316–22 [Google Scholar]
  30. Hoffmann A, Chiang C-M, Oelgeschlager T, Xie X, Burley SK. et al. 1996. Nature 380:356–59 [Google Scholar]
  31. Nakatani Y, Bagby S, Ikura M. 1996. J. Biol. Chem. 271:6575–78 [Google Scholar]
  32. Thomas JO, Butler PJ. 1977. J. Mol. Biol. 116:769–81 [Google Scholar]
  33. Ruiz-Carrillo A, Jorcano JL. 1979. Biochemistry 18:760–68 [Google Scholar]
  34. Arents G, Moudrianakis EN. 1993. Proc. Natl. Acad. Sci. USA 90:10489–93 [Google Scholar]
  35. McGhee JD, Felsenfeld G. 1980. Annu. Rev. Biochem. 49:1115–56 [Google Scholar]
  36. Wu HM, Dattagupta N, Hogan M, Crothers DM. 1979. Biochemistry 18:3960–65 [Google Scholar]
  37. Uberbacher EC, Remakrishnan V, Olins DE, Bunick GJ. 1983. Biochemistry 22:4916–23 [Google Scholar]
  38. Simpson RT. 1981. Proc. Natl. Acad. Sci. USA 78:6803–7 [Google Scholar]
  39. Gordon VC, Knobler CM, Olins DE, Schumaker VN. 1978. Proc. Natl. Acad. Sci. USA 75:660–63 [Google Scholar]
  40. Gordon VC, Schumaker VN, Olins DE, Knobler CM, Horwitz J. 1979. Nucleic Acids Res. 6:3845–58 [Google Scholar]
  41. Martinson HG, True RJ, Burch JBE. 1979. Biochemistry 18:1082–89 [Google Scholar]
  42. Burch JBE, Martinson HG. 1980. Nucleic Acids Res. 80:4969–87 [Google Scholar]
  43. Baer BW, Rhodes D. 1983. Nature 301:482–88 [Google Scholar]
  44. Hayes JJ, Wolffe AP. 1992. Proc. Natl. Acad. Sci. USA 89:1229–33 [Google Scholar]
  45. Dilworth SM, Black SJ, Laskey RA. 1987. Cell 51:1009–18 [Google Scholar]
  46. Ishimi Y, Kojima M, Yamada M, Hanaoka F. 1987. Eur. J. Biochem. 162:19–24 [Google Scholar]
  47. Kleinschmidt JA, Fortkamp E, Krohne G, Zentgraf H, Franke WW. 1985. J. Biol. Chem. 260:1166–76 [Google Scholar]
  48. Kleinschmidt JA, Seiter A, Zentgraf H. 1990. EMBO J. 9:1309–18 [Google Scholar]
  49. Chen H, Li BY, Workman JL. 1994. EMBO J. 13:380–90 [Google Scholar]
  50. Walter PP, Owen-Hughes TA, Côté J, Workman JL. 1995. Mol. Cell. Biol. 15:6178–87 [Google Scholar]
  51. Hansen JC, Wolffe AP. 1994. Proc. Natl. Acad. Sci. USA 91:2339–43 [Google Scholar]
  52. Hirschhorn JN, Brown SA, Clark CD, Winston F. 1992. Genes Dev. 6:2288–98 [Google Scholar]
  53. Santisteban MS, Arents G, Moudrianakis EN, Smith MM. 1997. EMBO J. 16:2493–506 [Google Scholar]
  54. Bazett-Jones DP, Mendez E, Czarnota GJ, Ottensmeyer FP, Allfrey VG. 1996. Nucleic Acids Res. 24:321–29 [Google Scholar]
  55. Sterner R, Boffa LC, Chen TA, Allfrey VG. 1987. Nucleic Acids Res. 15:4375–91 [Google Scholar]
  56. Allegra P, Sterner R, Clayton DF, Allfrey VG. 1987. J. Mol. Biol. 196:379–88 [Google Scholar]
  57. Walker J, Chen TA, Sterner R, Berger M, Winston F, Allfrey VG. 1990. J. Biol. Chem. 265:5736–46 [Google Scholar]
  58. Chen TA, Sterner R, Cozzolino A, Allfrey VG. 1990. J. Mol. Biol. 212:481–93 [Google Scholar]
  59. Eshaghpour H, Dieterich AE, Cantor CR, Crothers DM. 1980. Biochemistry 19:1797–805 [Google Scholar]
  60. Lee M-S, Garrard WT. 1991. EMBO J. 10:607–15 [Google Scholar]
  61. Lee M-S, Garrard WT. 1991. Proc. Natl. Acad. Sci. USA 88:9675–79 [Google Scholar]
  62. Liang CP, Garrard WT. 1997. Mol. Cell. Biol. 17:2825–34 [Google Scholar]
  63. Weischet WO, Tatchell K, Van Holde KE, Klump H. 1978. Nucleic Acids Res. 5:139–60 [Google Scholar]
  64. Simpson RT. 1979. J. Biol. Chem. 254:10123–27 [Google Scholar]
  65. Vettese-Dadey M, Walter P, Chen H, Juan L-J, Workman JL. 1994. Mol. Cell. Biol. 14:970–81 [Google Scholar]
  66. Li Q, Wrange Ö. 1993. Genes Dev. 7:2471–82 [Google Scholar]
  67. Adams CC, Workman JL. 1995. Mol. Cell. Biol. 15:1405–21 [Google Scholar]
  68. Taylor ICA, Workman JL, Schuetz TJ, Kingston RE. 1991. Genes Dev. 5:1285–98 [Google Scholar]
  69. Polach KJ, Widom J. 1996. J. Mol. Biol. 258:800–12 [Google Scholar]
  70. Polach KJ, Widom J. 1995. J. Mol. Biol. 254:130–49 [Google Scholar]
  71. Beard P. 1978. Cell 15:955–67 [Google Scholar]
  72. Weischet WO. 1979. Nucleic Acids Res. 7:291–304 [Google Scholar]
  73. Simpson RT, Thoma F, Brubaker JM. 1985. Cell 42:799–808 [Google Scholar]
  74. Pennings S, Meersseman G, Bradbury EM. 1991. J. Mol. Biol. 220:101–10 [Google Scholar]
  75. Meersseman G, Pennings S, Bradbury EM. 1991. J. Mol. Biol. 220:89–100 [Google Scholar]
  76. Meersseman G, Pennings S, Bradbury EM. 1992. EMBO J. 11:2951–59 [Google Scholar]
  77. Pennings S, Meersseman G, Bradbury EM. 1994. Proc. Natl. Acad. Sci. USA 91:10275–79 [Google Scholar]
  78. Ura K, Hayes JJ, Wolffe AP. 1995. EMBO J. 14:3752–65 [Google Scholar]
  79. Wall G, Varga-Weisz PD, Sandaltzopoulos R, Becker PB. 1995. EMBO J. 14:1727–36 [Google Scholar]
  80. Varga-Weisz PD, Blank TA, Becker PB. 1995. EMBO J. 14:2209–16 [Google Scholar]
  81. Pazin MJ, Bhargava P, Geiduschek EP, Kadonaga JT. 1997. Science 276:809–12 [Google Scholar]
  82. O'Neill TE, Smith JG, Bradbury EM. 1993. Proc. Natl. Acad. Sci. USA 90:6203–7 [Google Scholar]
  83. Workman JL, Kingston RE. 1992. Science 258:1780–84 [Google Scholar]
  84. Owen-Hughes T, Workman JL. 1996. EMBO J. 15:4702–12 [Google Scholar]
  85. Csordas A. 1990. Biochem. J. 265:23–38 [Google Scholar]
  86. Grunstein M. 1997. Nature 389:349–52 [Google Scholar]
  87. Brownell JE, Allis CD. 1996. Curr. Opin. Genet. Dev. 6:176–84 [Google Scholar]
  88. Turner BM, O'Neill LP. 1995. Semin. Cell Biol. 6:229–36 [Google Scholar]
  89. Smith RM, Rill RL. 1989. J. Biol. Chem. 264:10574–81 [Google Scholar]
  90. Cary PD, Moss T, Bradbury EM. 1978. Eur. J. Biochem. 89:475–82 [Google Scholar]
  91. Bohm L, Sautiere P, Cary PD, Crane-Robinson C. 1982. Biochem. J. 203:577–82 [Google Scholar]
  92. Dong F, Nelson C, Ausio J. 1990. Biochemistry 29:10710–16 [Google Scholar]
  93. Ausio J, Dong F, van Holde K. 1989. J. Mol. Biol. 206:451–63 [Google Scholar]
  94. Lee DY, Hayes JJ, Pruss D, Wolffe AP. 1993. Cell 72:73–84 [Google Scholar]
  95. Juan L-J, Utley RT, Adams CC, Vettese-Dadey M, Workman JL. 1994. EMBO J. 13:6031–40 [Google Scholar]
  96. Hansen JC, Ausio J, Stanik VH, van Holde K. 1989. Biochemistry 28:9129–36 [Google Scholar]
  97. Fletcher TM, Krishnan U, Serwer P, Hansen JC. 1994. Biochemistry 33:2226–33 [Google Scholar]
  98. Hansen JC, Lohr D. 1993. J. Biol. Chem. 268:5840–48 [Google Scholar]
  99. Fletcher TM, Hansen JC. 1995. J. Biol. Chem. 270:25359–62 [Google Scholar]
  100. Garcia RM, Dong F, Ausio J. 1992. J. Biol. Chem. 267:19587–95 [Google Scholar]
  101. Simpson RT. 1978. Cell 13:691–99 [Google Scholar]
  102. Garcia RM, Rocchini C, Ausio J. 1995. J. Biol. Chem. 270:17923–28 [Google Scholar]
  103. Ausio J, van Holde K. 1986. Biochemistry 25:1421–28 [Google Scholar]
  104. Vettese DM, Grant PA, Hebbes TR, Crane RC, Allis CD, Workman JL. 1996. EMBO J. 15:2508–18 [Google Scholar]
  105. Norton VG, Marvin KW, Yau P, Bradbury EM. 1990. J. Biol. Chem. 265:19848–52 [Google Scholar]
  106. Norton VG, Imai BS, Yau P, Bradbury EM. 1989. Cell 57:449–57 [Google Scholar]
  107. Thomsen B, Bendixen C, Westergaard O. 1991. Eur. J. Biochem. 201:107–11 [Google Scholar]
  108. Lutter LC, Judis L, Paretti RF. 1992. Mol. Cell. Biol. 12:5004–14 [Google Scholar]
  109. Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM. 1993. J. Biol. Chem. 268:305–14 [Google Scholar]
  110. Lee K-M, Hayes JJ. 1997. Proc. Natl. Acad. Sci. USA 94:8959–64 [Google Scholar]
  111. Ebralidse KK, Grachev SA, Mirzabekov AD. 1988. Nature 331:365–67 [Google Scholar]
  112. Hill CS, Thomas JO. 1990. Eur. J. Biochem. 187:145–53 [Google Scholar]
  113. Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. 1995. Cell 80:583–92 [Google Scholar]
  114. Johnson LM, Kayne PS, Kahn ES, Grunstein M. 1990. Proc. Natl. Acad. Sci. USA 87:6286–90 [Google Scholar]
  115. De Rubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G. et al. 1996. Nature 384:589–91 [Google Scholar]
  116. Moretti P, Freeman K, Coodly L, Shore D. 1994. Genes Dev. 8:2257–69 [Google Scholar]
  117. Renauld H, Aparicio OM, Zierath PD, Billington BL, Chhablani SK, Gottschling DE. 1993. Genes Dev. 7:1133–45 [Google Scholar]
  118. Allfrey VG, Faulkner R, Mirsky AE. 1964. Proc. Natl. Acad. Sci. USA 51:786–94 [Google Scholar]
  119. Mathis D, Oudet P, Chambon P. 1980. Proc. Natl. Acad. Sci. USA 24:1–55 [Google Scholar]
  120. Vavra KJ, Allis CD, Gorovsky MA. 1982. J. Biol. Chem. 257:2591–98 [Google Scholar]
  121. Chicoine LG, Richman R, Cook RG, Gorovsky MA, Allis CD. 1987. J. Cell Biol. 105:127–35 [Google Scholar]
  122. Louie AJ, Dixon GH. 1972. Proc. Natl. Acad. Sci. USA 1972:1975–79 [Google Scholar]
  123. Ruiz-Carrillo A, Wangh LJ, Allfrey VG. 1975. Science 190:117–28 [Google Scholar]
  124. Jackson V, Shires A, Tanphaichitr N, Chalkley R. 1976. J. Mol. Biol. 104:471–83 [Google Scholar]
  125. Allis CD, Chicoine LG, Richman R, Schulman IG. 1985. Proc. Natl. Acad. Sci. USA 82:8048–52 [Google Scholar]
  126. Annunziato AT, Seale RL. 1983. J. Biol. Chem. 258:12675–84 [Google Scholar]
  127. Yukioka M, Sasaki S, Qi S-L, Inoue A. 1984. J. Biol. Chem. 259:8372–77 [Google Scholar]
  128. Fukushima M, Ota K, Fujimoto D, Horiuchi K. 1980. Biochem. Biophys. Res. Commun. 92:1409–14 [Google Scholar]
  129. Gallwitz D, Sures I. 1972. Biochim. Biophys. Acta 263:315–28 [Google Scholar]
  130. Libby PR. 1968. Biochem. Biophys. Res. Commun. 31:59–65 [Google Scholar]
  131. Belikoff E, Wong L-J, Alberts BM. 1980. J. Biol. Chem. 255:11448–53 [Google Scholar]
  132. Bohm J, Schlaeger EJ, Knippers R. 1980. Eur. J. Biochem. 112:353–62 [Google Scholar]
  133. Wiegand RC, Brutlag DL. 1981. J. Biol. Chem. 256:4578–83 [Google Scholar]
  134. Travis GH, Colavito-Shepanski M, Grunstein M. 1984. J. Biol. Chem. 259:14406–12 [Google Scholar]
  135. Lopez-Rodas G, Tordera V, Sanchez del Pino MM, Franco L. 1989. J. Biol. Chem. 264:9028–33 [Google Scholar]
  136. Lopez-Rodas G, Perez-Ortin JE, Tordera V, Salvador ML, Franco L. 1985. Arch. Biochem. Biophys. 239:184–90 [Google Scholar]
  137. Lopez-Rodas G, Tordera V, Sanchez del Pino MM, Franco L. 1991. Biochemistry 30:3728–32 [Google Scholar]
  138. Lopez-Rodas G, Georgieva EI, Sendra R, Loidl P. 1991. J. Biol. Chem. 266:18745–50 [Google Scholar]
  139. Grabher A, Brosch G, Sendra R, Lechner T, Eberharter A. et al. 1994. Biochemistry 33:14887–95 [Google Scholar]
  140. Lopez-Rodas G, Brosch G, Golderer G, Lindner H, Grobner P, Loidl P. 1992. FEBS Lett. 296:82–86 [Google Scholar]
  141. Garcea RL, Alberts BM. 1980. J. Biol. Chem. 255:11454–63 [Google Scholar]
  142. Sures I, Gallwitz D. 1980. Biochemistry 19:943–51 [Google Scholar]
  143. Wiktorowicz JE, Bonner J. 1982. J. Biol. Chem. 257:12893–900 [Google Scholar]
  144. Kelner DN, McCarty KS Sr. 1984. J. Biol. Chem. 259:3413–19 [Google Scholar]
  145. Verreault A, Kaufman PD, Kobayashi R, Stillman B. 1996. Cell 87:95–104 [Google Scholar]
  146. Stillman B. 1986. Cell 45:555–65 [Google Scholar]
  147. Smith S, Stillman B. 1989. Cell 58:15–25 [Google Scholar]
  148. Kaufman PD, Kobayashi R, Kessler N, Stillman B. 1995. Cell 81:1105–14 [Google Scholar]
  149. Gaillard P-H, Martini EM-D, Kaufman PD, Stillman B, Moustacchi E, Almouzni G. 1996. Cell 86:887–96 [Google Scholar]
  150. Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD. 1995. Proc. Natl. Acad. Sci. USA 92:1237–41 [Google Scholar]
  151. Qian YW, Wang YCJ, Hollingsworth REJ, Jones D, Ling N, Lee EYHP. 1993. Nature 364:648–52 [Google Scholar]
  152. Qian YW, Lee EYHP. 1995. J. Biol. Chem. 270:25507–13 [Google Scholar]
  153. Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT. 1996. Mol. Cell. Biol. 16:6149–59 [Google Scholar]
  154. Taunton J, Hassig CA, Schreiber SL. 1996. Science 272:408–11 [Google Scholar]
  155. Parthun MR, Widom J, Gottschling DE. 1996. Cell 87:85–94 [Google Scholar]
  156. Roth SY, Allis CD. 1996. Cell 87:5–8 [Google Scholar]
  157. Eberharter A, Lechner T, Goralik-Schramel M, Loidl P. 1996. FEBS Lett. 386:75–81 [Google Scholar]
  158. Kleff S, Andrulis ED, Anderson CW, Sternglanz R. 1995. J. Biol. Chem. 270:24674–77 [Google Scholar]
  159. Brownell JE, Allis CD. 1995. Proc. Natl. Acad. Sci. USA 92:6364–68 [Google Scholar]
  160. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG. et al. 1996. Cell 84:843–51 [Google Scholar]
  161. Georgakopoulos T, Thireos G. 1992. EMBO J. 11:4145–52 [Google Scholar]
  162. Marcus GA, Silverman N, Berger SL, Horiuchi J, Guarente L. 1994. EMBO J. 13:4807–15 [Google Scholar]
  163. Kuo M-H, Brownell JE, Sobel RE, Ranalli TA, Cook RG. et al. 1996. Nature 383:269–72 [Google Scholar]
  164. Wang LA, Mizzen C, Ying C, Candau R, Barlev N. et al. 1997. Mol. Cell. Biol. 17:519–27 [Google Scholar]
  165. Candau R, Zhou JX, Allis CD, Berger SL. 1997. EMBO J. 16:555–65 [Google Scholar]
  166. Berger SL, Pina B, Silverman N, Marcus GA, Agapite J. et al. 1992. Cell 70:251–65 [Google Scholar]
  167. Pina B, Berger S, Marcus GA, Silverman N, Agapite J, Guarente L. 1993. Mol. Cell. Biol. 13:5981–89 [Google Scholar]
  168. Marcus FA, Horiuchi J, Silverman N, Guarente L. 1996. Mol. Cell. Biol. 16:3197–205 [Google Scholar]
  169. Roberts SM, Winston F. 1996. Mol. Cell. Biol. 16:3206–13 [Google Scholar]
  170. Horiuchi J, Silverman N, Pina B, Marcus GA, Guarente L. 1997. Mol. Cell. Biol. 17:3220–28 [Google Scholar]
  171. Horiuchi J, Silverman N, Marcus GA, Guarente L. 1995. Mol. Cell. Biol. 15:1203–9 [Google Scholar]
  172. Candau R, Berger SL. 1996. J. Biol. Chem. 271:5237–45 [Google Scholar]
  173. Saleh A, Lang V, Cook R, Brandl CJ. 1997. J. Biol. Chem. 272:5571–78 [Google Scholar]
  174. Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE. et al. 1997. Genes Dev. 11:1640–50 [Google Scholar]
  175. Ruiz-Garcia AB, Sendra R, Pamblanco M, Tordera V. 1997. FEBS Lett. 403:186–90 [Google Scholar]
  176. Winston F, Carlson M. 1992. Trends Genet. 8:387–91 [Google Scholar]
  177. Eisenmann DM, Arndt KM, Ribupero SL, Rooney JW, Winston F. 1992. Genes Dev. 6:1319–31 [Google Scholar]
  178. Eisenmann DM, Chapon C, Roberts SM, Dollard C, Winston F. 1994. Genetics 137:647–57 [Google Scholar]
  179. Roberts SM, Winston F. 1997. Genetics 147:451–65 [Google Scholar]
  180. Silverman N, Agapite J, Guarente L. 1994. Proc. Natl. Acad. Sci. USA 91:11665–68 [Google Scholar]
  181. Barlev NA, Candau R, Wang L, Darpino P, Silverman N, Berger SL. 1995. J. Biol. Chem. 270:9337–44 [Google Scholar]
  182. Madison JM, Winston F. 1997. Mol. Cell. Biol. 17:287–95 [Google Scholar]
  183. Neuwald AF, Landsman D. 1997. Trends Biochem. Sci. 22:154–55 [Google Scholar]
  184. Reifsnyder C, Lowell J, Clarke A, Pillus L. 1996. Nat. Genet. 14:42–49 [Google Scholar]
  185. Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnaudurai G. 1996. Virology 216:357–66 [Google Scholar]
  186. Borrow J, Stanton VPJ, Andresen JM, Becher R, Behm FG. et al. 1996. Nat. Genet. 14:33–41 [Google Scholar]
  187. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montiminy MR, Goodman RH. 1993. Nature 365:855–59 [Google Scholar]
  188. Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG. et al. 1994. Nature 370:223–26 [Google Scholar]
  189. Arany Z, Sellers WR, Livingston DM, Eckner R. 1994. Cell 77:799–800 [Google Scholar]
  190. Arias J, Alberts AS, Brindle P, Claret FX, Smeal T. et al. 1994. Nature 370:226–29 [Google Scholar]
  191. Bannister AJ, Oehler T, Wilhelm D, Angel P, Kouzarides T. 1995. Oncogene 11:2509–14 [Google Scholar]
  192. Dai P, Akimaru H, Tanaka Y, Hou DX, Yasukawa T. et al. 1996. Genes Dev. 10:528–40 [Google Scholar]
  193. Oelgeschlager M, Janknecht R, Krieg J, Schreek S, Luscher B. 1996. EMBO J. 15:2771–80 [Google Scholar]
  194. Yuan WC, Condorelli G, Caruso M, Felsani A, Giordano A. 1996. J. Biol. Chem. 271:9009–13 [Google Scholar]
  195. Chakravarti D, La Morte VJ, Nelson MC, Nakajima T, Schulman IG. et al. 1996. Nature 383:99–103 [Google Scholar]
  196. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R. et al. 1996. Cell 85:403–14 [Google Scholar]
  197. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA. et al. 1994. Genes Dev. 8:869–84 [Google Scholar]
  198. Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R. 1995. Nature 374:81–84 [Google Scholar]
  199. Yang X-J, Ogryzko VV, Nishikawa J-I, Howard BH, Nakatani Y. 1996. Nature 382:319–24 [Google Scholar]
  200. Candau R, Moore PA, Wang L, Barlev N, Ying CY. et al. 1996. Mol. Cell. Biol. 16:593–602 [Google Scholar]
  201. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. 1996. Cell 87:953–59 [Google Scholar]
  202. Gu W, Roeder RG. 1997. Cell 90:595–606 [Google Scholar]
  203. Chen HW, Lin RJ, Schiltz RL, Chakravarti D, Nash A. et al. 1997. Cell 90:569–80 [Google Scholar]
  204. Fondell JD, Ge H, Roeder RG. 1996. Proc. Natl. Acad. Sci. USA 93:8329–33 [Google Scholar]
  205. Mizzen CA, Yang X-J, Kokubo T, Brownell JE, Bannister AJ. et al. 1996. Cell 87:1261–70 [Google Scholar]
  206. Dikstein R, Ruppert S, Tjian R. 1996. Cell 84:781–90 [Google Scholar]
  207. Boffa L, Vidali G, Mann R, Allfrey V. 1978. J. Biol. Chem. 253:3364–66 [Google Scholar]
  208. Georgieva EI, Lopez-Rodas G, Sendra R, Grobner P, Loidl P. 1991. J. Biol. Chem. 266:18751–60 [Google Scholar]
  209. Brosch G, Georgieva EI, Lopez-Rodas G, Lindner H, Loidl P. 1992. J. Biol. Chem. 267:20561–64 [Google Scholar]
  210. Lechner T, Lusser A, Brosch G, Eberharter A, Goralik-Schramel M, Loidl P. 1996. Biochim. Biophys. Acta 1296:181–88 [Google Scholar]
  211. Hay CW, Candido EP. 1983. Biochemistry 22:6175–80 [Google Scholar]
  212. Sanchez del Pino MM, Lopez-Rodas G, Sendra R, Tordera V. 1994. Biochem. J. 303:723–29 [Google Scholar]
  213. Carmen AA, Rundlett SE, Grunstein M. 1996. J. Biol. Chem. 271:15837–44 [Google Scholar]
  214. Kasten MM, Dorland S, Stillman DJ. 1997. Mol. Cell. Biol. 17:4852–58 [Google Scholar]
  215. Lusser A, Brosch G, Loidl A, Haas H, Loidl P. 1997. Science 277:88–91 [Google Scholar]
  216. Yang WM, Inouye C, Zeng YY, Bearss D, Seto E. 1996. Proc. Natl. Acad. Sci. USA 93:12845–50 [Google Scholar]
  217. Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M. 1996. Proc. Natl. Acad. Sci. USA 93:14503–8 [Google Scholar]
  218. Bowdish KS, Mitchell AP. 1993. Mol. Cell. Biol. 13:2172–81 [Google Scholar]
  219. McKenzie EA, Kent NA, Dowell SJ, Moreno F, Bird LE, Mellor J. 1993. Mol. Gen. Genet. 240:374–86 [Google Scholar]
  220. Stillman DJ, Dorland S, Yu YX. 1994. Genetics 136:781–88 [Google Scholar]
  221. Vidal M, Strich R, Esposito RE, Gaber RF. 1991. Mol. Cell. Biol. 11:6306–16 [Google Scholar]
  222. Vidal M, Gaber RF. 1991. Mol. Cell. Biol. 11:6317–27 [Google Scholar]
  223. Kadosh D, Struhl K. 1997. Cell 89:365–71 [Google Scholar]
  224. Wang HM, Stillman DJ. 1993. Mol. Cell. Biol. 13:1805–14 [Google Scholar]
  225. Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H. 1992. Nature 359:423–26 [Google Scholar]
  226. Kretzner L, Blackwood EM, Eisenman RN. 1992. Nature 359:426–29 [Google Scholar]
  227. Chen JD, Evans RM. 1995. Nature 377:454–57 [Google Scholar]
  228. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B. et al. 1995. Nature 377:397–404 [Google Scholar]
  229. Ayer DE, Lawrence QA, Eisenman RN. 1995. Cell 80:767–76 [Google Scholar]
  230. Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G. et al. 1995. Cell 80:777–86 [Google Scholar]
  231. Nagy L, Kao H-Y, Chakravarti D, Lin RJ, Hassig CA. et al. 1997. Cell 89:373–80 [Google Scholar]
  232. Alland L, Muhle R, Hou HJ, Potes J, Chin L. et al. 1997. Nature 387:49–55 [Google Scholar]
  233. Heinzel T, Lavinsky RM, Mullen T-M, Soderstrom M, Laherty CD. et al. 1997. Nature 387:43–48 [Google Scholar]
  234. Laherty CD, Yang W-M, Sun J-M, Davie JR, Seto E, Eisenman RN. 1997. Cell 89:349–56 [Google Scholar]
  235. Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. 1997. Cell 89:341–47 [Google Scholar]
  236. Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D. 1997. Cell 89:357–64 [Google Scholar]
  237. Kingston RE, Bunker CA, Imbalzano AN. 1996. Genes Dev. 10:905–20 [Google Scholar]
  238. Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR. 1994. Nature 370:477–81 [Google Scholar]
  239. Peterson CL, Herskowitz I. 1992. Cell 68:573–83 [Google Scholar]
  240. Côté J, Quinn J, Workman JL, Peterson CL. 1994. Science 265:53–60 [Google Scholar]
  241. Tsukiyama T, Becker PB, Wu C. 1994. Nature 367:525–31 [Google Scholar]
  242. Tsukiyama T, Wu C. 1995. Cell 83:1011–20 [Google Scholar]
  243. Varga WP, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. 1997. Nature 388:598–602 [Google Scholar]
  244. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. 1997. Cell 90:145–55 [Google Scholar]
  245. Cairns BR, Kim Y-J, Sayre MH, Laurent BC, Kornberg RD. 1994. Proc. Natl. Acad. Sci. USA 91:1950–54 [Google Scholar]
  246. Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L. et al. 1996. Cell 87:1249–60 [Google Scholar]
  247. Peterson CL, Dingwall A, Scott MP. 1994. Proc. Natl. Acad. Sci. USA 91:2905–8 [Google Scholar]
  248. Wang WD, Côté J, Xue Y, Zhou S, Khavari PA. et al. 1996. EMBO J. 15:5370–82 [Google Scholar]
  249. Wang WD, Xue YT, Zhou S, Kuo A, Cairns BR, Crabtree GR. 1996. Genes Dev. 10:2117–30 [Google Scholar]
  250. Muchardt C, Yaniv M. 1993. EMBO J. 12:4279–90 [Google Scholar]
  251. Khavari PA, Peterson CL, Tamkun JW, Crabtree GR. 1993. Nature 366:170–74 [Google Scholar]
  252. Chiba H, Muramatsu M, Nomoto A, Kato H. 1994. Nucleic Acids Res. 22:1815–20 [Google Scholar]
  253. Muchardt C, Reyes JC, Bourachot B, Leguoy E, Yaniv M. 1996. EMBO J. 15:3394–402 [Google Scholar]
  254. Laurent BC, Yang XL, Carlson M. 1992. Mol. Cell. Biol. 12:1893–902 [Google Scholar]
  255. Neigeborn L, Carlson M. 1984. Genetics 108:845–58 [Google Scholar]
  256. Cao Y, Cairns BR, Kornberg RD, Laurent BC. 1997. Mol. Cell. Biol. 17:3323–34 [Google Scholar]
  257. Sumi IC, Ichinose H, Metzger D, Chambon P. 1997. Mol. Cell. Biol. 17:5976–86 [Google Scholar]
  258. Tsukiyama T, Daniel C, Tamkun J, Wu C. 1995. Cell 83:1021–26 [Google Scholar]
  259. Pazin MJ, Kadonaga JT. 1997. Cell 88:737–40 [Google Scholar]
  260. Imbalzano AN, Schnitzler GR, Kingston RE. 1996. J. Biol. Chem. 271:20726–33 [Google Scholar]
  261. Georgel PT, Tsukiyama T, Wu C. 1997. EMBO J. 16:4717–26 [Google Scholar]
  262. Owen-Hughes T, Utley RT, Cote J, Peterson CL, Workman JL. 1996. Science 273:513–16 [Google Scholar]
  263. Kruger W, Peterson CL, Sil A, Coburn C, Arents G. et al. 1995. Genes Dev. 9:2770–79 [Google Scholar]
  264. Wechser MA, Kladde MP, Alfieri JA, Peterson CL. 1997. EMBO J. 16:2086–95 [Google Scholar]
  265. Yoshinaga SK, Peterson CL, Herskowitz I, Yamamoto KR. 1992. Science 258:1598–604 [Google Scholar]
  266. Ostlund FA, Blomquist P, Kwon H, Wrange Ö. 1997. Mol. Cell. Biol. 17:895–905 [Google Scholar]
  267. Pina B, Bruggemeier U, Beato M. 1990. Cell 60:719–31 [Google Scholar]
  268. Perlmann T, Wrange Ö. 1991. Mol. Cell. Biol. 11:5259–65 [Google Scholar]
  269. Wong JM, Shi Y-B, Wolffe AP. 1995. Genes Dev. 9:2696–711 [Google Scholar]
  270. Wilson CJ, Chao DM, Imbalzano AN, Schnitzler GR, Kingston RE, Young RA. 1996. Cell 84:235–44 [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.545
Loading
/content/journals/10.1146/annurev.biochem.67.1.545
Loading

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error