1932

Abstract

Recent structural and biochemical investigations have come together to allow a better understanding of the mechanism of chaperonin (GroEL, Hsp60)–mediated protein folding, the final step in the accurate expression of genetic information. Major, asymmetric conformational changes in the GroEL double toroid accompany binding of ATP and the cochaperonin GroES. When a nonnative polypeptide, bound to one of the GroEL rings, is encapsulated by GroES to form a ternary complex, these changes drive the polypeptide into the sequestered cavity and initiate its folding. ATP hydrolysis in the ring primes release of the products, and ATP binding in the ring then disrupts the complex. This process allows the polypeptide to achieve its final native state, if folding was completed, or to recycle to another chaperonin molecule, if the folding process did not result in a form committed to the native state.

Keyword(s): ATPchaperoninGroESHsp60
Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.581
1998-07-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.581.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.581&mimeType=html&fmt=ahah

Literature Cited

  1. Dill KA, Chan HS. 1997. Nat. Struct. Biol. 4:10–19 [Google Scholar]
  2. Flynn GC, Chappell TG, Rothman JE. 1989. Science 245:385–90 [Google Scholar]
  3. Zhu XT, Zhao X, Burkholder WF, Gragerov A, Ogata CM. et al. 1996. Science 272:1606–14 [Google Scholar]
  4. Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B. 1997. EMBO J. 16:1501–7 [Google Scholar]
  5. Rudiger S, Buchberger A, Bukau B. 1997. Nat. Struct. Biol. 4:342–49 [Google Scholar]
  6. Ehrnsperger M, Gräber S, Gaestel M, Buchner J. 1997. EMBO J. 16:221–29 [Google Scholar]
  7. Lee GJ, Roseman AM, Saibil HR, Vierling E. 1997. EMBO J. 16:659–71 [Google Scholar]
  8. Sullivan W, Stensgard B, Caucutt G, Bartha B, McMahon N. et al. 1997. J. Biol. Chem. 272:8007–12 [Google Scholar]
  9. Bohen SP, Kralli A, Yamamoto KR. 1995. Science 268:1303–4 [Google Scholar]
  10. Fenton WA, Horwich AL. 1997. Protein Sci. 6:743–60 [Google Scholar]
  11. Ellis RJ. ed 1996. The Chaperonins. San Diego, CA: Academic [Google Scholar]
  12. Hartl F-U. 1996. Nature 381:571–80 [Google Scholar]
  13. Hendrix RW. 1979. J. Mol. Biol. 129:375–92 [Google Scholar]
  14. Hohn T, Hohn B, Engel A, Wurtz M, Smith PR. 1979. J. Mol. Biol. 129:359–73 [Google Scholar]
  15. Tilly K, Murialdo H, Georgopoulos C. 1981. Proc. Natl. Acad. Sci. USA 78:1629–33 [Google Scholar]
  16. Chandrasekhar GN, Tilly K, Woolford C, Hendrix R, Georgopoulos C. 1986. J. Biol. Chem. 261:12414–19 [Google Scholar]
  17. Saibil H, Dong Z, Wood S, auf der Mauer A. 1991. Nature 353:25–26 [Google Scholar]
  18. Langer T, Pfeifer G, Martin J, Baumeister W, Hartl F-U. 1992. EMBO J. 11:4757–65 [Google Scholar]
  19. Ishii N, Taguchi H, Sumi M, Yoshida M. 1992. FEBS Lett. 299:169–74 [Google Scholar]
  20. Azem A, Kessel M, Goloubinoff P. 1994. Science 265:653–56 [Google Scholar]
  21. Schmidt M, Rutkat K, Rachel R, Pfeifer G, Jaenicke R. et al. 1994. Science 265:656–59 [Google Scholar]
  22. Engel A, Hayer-Hartl MK, Goldie KN, Pfeifer G, Hegerl R. et al. 1995. Science 269:832–36 [Google Scholar]
  23. Azem A, Diamant S, Kessel M, Weiss C, Goloubinoff P. 1995. Proc. Natl. Acad. Sci. USA 92:12021–25 [Google Scholar]
  24. Braig K, Simon M, Furaya F, Hainfeld JF, Horwich AL. 1993. Proc. Natl. Acad. Sci. USA 90:3978–82 [Google Scholar]
  25. Chen S, Roseman AM, Hunter AS, Wood SP, Burston SG. et al. 1994. Nature 371:261–64 [Google Scholar]
  26. Thiyagarajan P, Henderson SJ, Joachimiak A. 1996. Structure 4:79–88 [Google Scholar]
  27. Phipps BM, Hoffmann A, Stetter KO, Baumeister W. 1991. EMBO J. 10:1711–22 [Google Scholar]
  28. Trent JD, Nimmesgern E, Wall JS, Hartl F-U, Horwich AL. 1991. Nature 354:490–93 [Google Scholar]
  29. Liou AKF, Willison KR. 1997. EMBO J. 16:4311–16 [Google Scholar]
  30. Horwich AL, Willison KR. 1993. Philos. Trans. R. Soc. London Ser. B 339:313–26 [Google Scholar]
  31. Kubota H, Hynes G, Carne A, Ashworth A, Willison K. 1994. Curr. Biol. 4:89–99 [Google Scholar]
  32. Lewis SA, Tian G, Vainberg IE, Cowan NJ. 1996. J. Cell Biol. 132:1–4 [Google Scholar]
  33. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A. et al. 1994. Nature 371:578–86 [Google Scholar]
  34. Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Deisenhofer J. 1996. Nature 379:37–45 [Google Scholar]
  35. Mande SC, Mehra V, Bloom BR, Hol WGJ. 1996. Science 271:203–7 [Google Scholar]
  36. Landry SJ, Zeilstra-Ryalls J, Fayet O, Georgopoulos C, Gierasch LM. 1993. Nature 364:255–58 [Google Scholar]
  37. Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH. 1989. Nature 342:884–89 [Google Scholar]
  38. Saibil HR, Zheng D, Roseman AM, Hunter AS, Watson GMF. et al. 1993. Curr. Biol. 3:265–73 [Google Scholar]
  39. Weissman JS, Rye HS, Fenton WA, Beechem JM, Horwich AL. 1996. Cell 84:481–90 [Google Scholar]
  40. Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z. et al. 1997. Nature 388:792–98 [Google Scholar]
  41. Fenton WA, Kashi Y, Furtak K, Horwich AL. 1994. Nature 371:614–19 [Google Scholar]
  42. Lin ZL, Schwarz FP, Eisenstein E. 1995. J. Biol. Chem. 270:1011–14 [Google Scholar]
  43. Itzhaki LS, Otzen DE, Fersht AR. 1995. Biochemistry 34:14581–87 [Google Scholar]
  44. Katsumata K, Okazaki A, Tsurupa GP, Kuwajima K. 1996. J. Mol. Biol. 264:643–49 [Google Scholar]
  45. Perrett S, Zahn R, Sternberg G, Fersht AR. 1997. J. Mol. Biol. 269:892–901 [Google Scholar]
  46. Landry SJ, Gierasch LM. 1991. Biochemistry 30:7359–62 [Google Scholar]
  47. Buckle AM, Zahn R, Fersht AR. 1997. Proc. Natl. Acad. Sci. USA 94:3571–75 [Google Scholar]
  48. Zahn R, Perrett S, Stenberg G, Fersht AR. 1996. Science 271:642–45 [Google Scholar]
  49. Lorimer G. 1997. Nature 388:720–23 [Google Scholar]
  50. Zahn R, Pluckthun A. 1994. J. Mol. Biol. 242:165–74 [Google Scholar]
  51. Walter S, Lorimer GH, Schmid FX. 1996. Proc. Natl. Acad. Sci. USA 93:9425–30 [Google Scholar]
  52. Viitanen PV, Donaldson GK, Lorimer GH, Lubben TH, Gatenby AA. 1991. Biochemistry 30:9716–23 [Google Scholar]
  53. Zahn R, Spitzfaden C, Ottiger M, Wuthrich K, Pluckthun A. 1994. Nature 368:261–65 [Google Scholar]
  54. Robinson CV, Groß M, Eyles SJ, Ewbank JJ, Mayhew M. et al. 1994. Nature 372:646–51 [Google Scholar]
  55. Goldberg MS, Zhang J, Sondek S, Matthews CR, Fox RO, Horwich AL. 1997. Proc. Natl. Acad. Sci. USA 94:1080–85 [Google Scholar]
  56. Groß M, Robinson CV, Mayhew M, Hartl F-U, Radford SE. 1996. Protein Sci. 5:2506–13 [Google Scholar]
  57. Ranson NA, Dunster NJ, Burston SG, Clarke AR. 1995. J. Mol. Biol. 250:581–86 [Google Scholar]
  58. Laminet AA, Ziegelhoffer T, Georgopoulos C, Pluckthun A. 1990. EMBO J. 9:2315–19 [Google Scholar]
  59. Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O'Keefe DP, Lorimer GH. 1990. Biochemistry 29:5665–71 [Google Scholar]
  60. Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl F-U. 1991. Nature 352:36–42 [Google Scholar]
  61. Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R. et al. 1991. Biochemistry 30:1586–91 [Google Scholar]
  62. Badcoe IG, Smith CJ, Wood S, Halsall DJ, Holbrook JJ. et al. 1991. Biochemistry 30:9195–9200 [Google Scholar]
  63. Gray TE, Fersht AR. 1991. FEBS Lett. 292:254–58 [Google Scholar]
  64. Bochkareva ES, Lissin NM, Flynn GC, Rothman JE, Girshovich AS. 1992. J. Biol. Chem. 267:6796–800 [Google Scholar]
  65. Jackson GS, Staniforth RA, Halsall DJ, Atkinson T, Holbrook JJ. et al. 1993. Biochemistry 32:2554–63 [Google Scholar]
  66. Todd MJ, Viitanen PV, Lorimer GH. 1993. Biochemistry 32:8560–67 [Google Scholar]
  67. Burston SG, Ranson NA, Clarke AR. 1995. J. Mol. Biol. 249:138–52 [Google Scholar]
  68. Roseman AM, Chen SX, White H, Braig K, Saibil HR. 1996. Cell 87:241–51 [Google Scholar]
  69. Yifrach O, Horovitz A. 1995. Biochemistry 34:9716–23 [Google Scholar]
  70. Boisvert DC, Wang JM, Otwinowski Z, Horwich AL, Sigler PB. 1996. Nat. Struct. Biol. 3:170–77 [Google Scholar]
  71. Kim S, Willison KR, Horwich AL. 1994. Trends Biochem. Sci. 19:543–48 [Google Scholar]
  72. Braig K, Adams PD, Brunger AT. 1995. Nat. Struct. Biol. 2:1083–94 [Google Scholar]
  73. Aharoni A, Horovitz A. 1996. J. Mol. Biol. 258:732–35 [Google Scholar]
  74. Xu Z, Horwich AL, Sigler PB. 1997. Nature 388:741–50 [Google Scholar]
  75. Murai N, Makino Y, Yoshida M. 1996. J. Biol. Chem. 271:28229–34 [Google Scholar]
  76. Todd MJ, Viitanen PV, Lorimer GH. 1994. Science 265:659–66 [Google Scholar]
  77. Klumpp M, Baumeister W, Essen L-O. 1977. Cell 91:263–70 [Google Scholar]
  78. Zeilstra-Ryalls J, Fayet O, Georgopoulos C. 1996. FASEB J. 10:148–52 [Google Scholar]
  79. Hunt JF, van der Vies SM, Henry L, Deisenhofer J. 1997. Cell 90:361–71 [Google Scholar]
  80. Burston SG, Weissman JS, Farr GW, Fenton WA, Horwich AL. 1996. Nature 383:96–99 [Google Scholar]
  81. Weissman JS, Kashi Y, Fenton WA, Horwich AL. 1994. Cell 78:693–702 [Google Scholar]
  82. Smith KE, Fisher MT. 1995. J. Biol. Chem. 270:21517–23 [Google Scholar]
  83. Taguchi H, Yoshida M. 1995. FEBS Lett. 359:195–98 [Google Scholar]
  84. Mayhew M, da Silva ACR, Martin J, Erdjument-Bromage H, Tempst P, Hartl F-U. 1996. Nature 379:420–26 [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.581
Loading
/content/journals/10.1146/annurev.biochem.67.1.581
Loading

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error