1932

Abstract

Ribonucleotide reductases provide the building blocks for DNA replication in all living cells. Three different classes of enzymes use protein free radicals to activate the substrate. Aerobic class I enzymes generate a tyrosyl radical with an iron-oxygen center and dioxygen, class II enzymes employ adenosylcobalamin, and the anaerobic class III enzymes generate a glycyl radical from -adenosylmethionine and an iron-sulfur cluster. The X-ray structure of the class I enzyme, including forms that bind substrate and allosteric effectors, confirms previous models of catalytic and allosteric mechanisms. This structure suggests considerable mobility of the protein during catalysis and, together with experiments involving site-directed mutants, suggests a mechanism for radical transfer from one subunit to the other. Despite large differences between the classes, common catalytic and allosteric mechanisms, as well as retention of critical residues in the protein sequence, suggest a similar tertiary structure and a common origin during evolution. One puzzling aspect is that some organisms contain the genes for several different reductases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.71
1998-07-01
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.71.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.71&mimeType=html&fmt=ahah

Literature Cited

  1. Reichard P, Baldesten A, Rutberg L. 1961. J. Biol. Chem. 236:1150–57 [Google Scholar]
  2. Holmgren A, Reichard P, Thelander L. 1965. Proc. Natl. Acad. Sci. USA 54:830–36 [Google Scholar]
  3. Blakley RL, Barker HA. 1964. Biochem. Biophys. Res. Commun. 10:391–97 [Google Scholar]
  4. Haurani FL. 1973. Science 182:78–79 [Google Scholar]
  5. Larsson A, Reichard P. 1966. Biochem. Biophys. Acta 113:407–8 [Google Scholar]
  6. Ehrenberg A, Reichard P. 1972. J. Biol. Chem. 247:3485–88 [Google Scholar]
  7. Sjöberg B-M, Reichard P, Gräslund A, Ehrenberg A. 1978. J. Biol. Chem. 253:6863–65 [Google Scholar]
  8. Stubbe J. 1989. Annu. Rev. Biochem. 58:257–85 [Google Scholar]
  9. Stubbe J. 1990. Adv. Enzymol. Relat. Areas Mol. Biol. 63:349–419 [Google Scholar]
  10. Fontecave M, Eliasson R, Reichard P. 1989. Proc. Natl. Acad. Sci. USA 86:2147–51 [Google Scholar]
  11. Sun XY, Ollagnier S, Schmidt PP, Atta M, Mulliez E. et al. 1996. J. Biol. Chem. 271:6827–31 [Google Scholar]
  12. Ollagnier S, Mulliez E, Gaillard J, Eliasson R, Fontecave M, Reichard P. 1996. J. Biol. Chem. 271:9410–16 [Google Scholar]
  13. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF. et al. 1995. Science 269:496–512 [Google Scholar]
  14. Young P, Öhman M, Xu MQ, Shub DA, Sjöberg B-M. 1994. J. Biol. Chem. 269:20229–32 [Google Scholar]
  15. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD. et al. 1996. Science 273:1058–73 [Google Scholar]
  16. Jordan A, Gibert I, Barbé J. 1994. J. Bacteriol. 176:3420–27 [Google Scholar]
  17. Jordan A, Pontis E, Atta M, Krook M, Gibert I. et al. 1994. Proc. Natl. Acad. Sci. USA 91:12892–96 [Google Scholar]
  18. Jordan A, Pontis E, Åslund F, Hellman U, Gibert I, Reichard P. 1996. J. Biol. Chem. 271:8779–85 [Google Scholar]
  19. Yang FD, Lu GZ, Rubin H. 1994. J. Bacteriol. 176:6738–43 [Google Scholar]
  20. Scotti C, Valbuzzi A, Perego M, Galizzi A, Albertini AM. 1996. Microbiology 142:2995–3004 [Google Scholar]
  21. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA. et al. 1995. Science 270:397–403 [Google Scholar]
  22. Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li B-C, Herrmann R. 1996. Nucleic Acids Res. 24:4420–49 [Google Scholar]
  23. Fieschi F, Torrents E, Toulokhonova L, Jordan A, Hellman U. et al. 1997. J. Biol. Chem. In press [Google Scholar]
  24. Jordan A, Torrents E, Jeanthon C, Eliasson R, Hellman U. et al. 1998. Proc. Natl. Acad. Sci. USA 94:13487–92 [Google Scholar]
  25. Nordlund P, Sjöberg B-M, Eklund H. 1990. Nature 345:593–98 [Google Scholar]
  26. Nordlund P, Eklund H. 1993. J. Mol. Biol. 232:123–64 [Google Scholar]
  27. Uhlin U, Eklund H. 1994. Nature 370:533–39 [Google Scholar]
  28. Uhlin U, Eklund H. 1996. J. Mol. Biol. 262:358–69 [Google Scholar]
  29. Eriksson M, Uhlin U, Ramaswamy S, Ekberg M, Regnström K. et al. 1997. Structure 5:1077–92 [Google Scholar]
  30. Stubbe J, van der Donk WA. 1995. Chem. Biol. 2:793–801 [Google Scholar]
  31. Sjöberg B-M. 1997. Struct. Bond. 88:139–73 [Google Scholar]
  32. Gräslund A, Sahlin M. 1996. Annu. Rev. Biophys. Biomol. Struct. 25:259–86 [Google Scholar]
  33. Greenberg GR, Hilfinger JM. 1996. Progr. Nucleic Acid Res. Mol. Biol. 53:345–95 [Google Scholar]
  34. Reichard P. 1997. Trends Biochem. Sci. 22:81–85 [Google Scholar]
  35. Thelander L, Gräslund A. 1994. In Metal Ions in Biological Systems, ed. H Sigel, A Sigel 109–29 New York: Dekker
  36. Reichard P. 1993. Science 260:8383–86 [Google Scholar]
  37. Fontecave M, Nodlund P, Eklund H, Reichard P. 1992. Adv. Enzymol. Relat. Areas Mol. Biol. 65:147–83 [Google Scholar]
  38. Panagou D, Orr MD, Dunstone JR, Blakley RL. 1972. Biochemistry 11:2378–88 [Google Scholar]
  39. Tsai PK, Hogenkamp HPC. 1980. J. Biol. Chem. 255:1273–78 [Google Scholar]
  40. Tauer A, Benner SA. 1997. Proc. Natl. Acad. Sci. USA 94:53–58 [Google Scholar]
  41. Riera J, Robb FT, Weiss R, Fontecave M. 1997. Proc. Natl. Acad. Sci. USA 94:475–78 [Google Scholar]
  42. Holmgren A, Björnstedt M. 1995. Methods Enzymol. 252:199–208 [Google Scholar]
  43. Holmgren A, Åslund F. 1995. Methods Enzymol. 252:2183–92 [Google Scholar]
  44. Mulliez E, Ollagnier S, Fontecave M, Eliasson R, Reichard P. 1995. Proc. Natl. Acad. Sci. USA 92:8759–62 [Google Scholar]
  45. Thelander L. 1974. J. Biol. Chem. 249:4858–62 [Google Scholar]
  46. Åberg A, Hahne S, Karlsson M, Larsson A, Ormö M. et al. 1989. J. Biol. Chem. 264:12249–52 [Google Scholar]
  47. Mao SS, Holler TP, Yu GX, Bollinger JM, Booker S. et al. 1992. Biochemistry 31:9733–43 [Google Scholar]
  48. Licht S, Gerfen GJ, Stubbe JA. 1996. Science 271:477–81 [Google Scholar]
  49. King D, Reichard P. 1995. Biochem. Biophys. Res. Commun. 206:731–35 [Google Scholar]
  50. Brown NC, Reichard P. 1969. J. Mol. Biol. 46:39–55 [Google Scholar]
  51. Gleason FK, Wood JM. 1976. Science 92:1343–44 [Google Scholar]
  52. Stuzenberger F. 1973. J. Gen. Microbiol. 81:501–3 [Google Scholar]
  53. Willing A, Follman H, Auling G. 1988. Eur. J. Biochem. 170:603–11 [Google Scholar]
  54. Eliasson R, Pontis E, Jordan A, Reichard P. 1996. J. Biol. Chem. 271:26582–87 [Google Scholar]
  55. Jordan A, Aragall E, Gibert I, Barbe J. 1996. Mol. Microbiol. 19:777–90 [Google Scholar]
  56. Jordan A, Åslund F, Pontis E, Reichard P, Holmgren A. 1997. J. Biol. Chem. 272:18044–50 [Google Scholar]
  57. Åberg A, Nordlund P, Eklund H. 1993. Nature 361:276–78 [Google Scholar]
  58. Logan D, Su XD, Åberg A, Rengström K, Hajdu J. et al. 1996. Structure 4:1053–64 [Google Scholar]
  59. Kauppi B, Nielsen BB, Ramaswamy S, Larsen IK, Thelander M. et al. 1996. J. Mol. Biol. 262:706–20 [Google Scholar]
  60. Holmgren A. 1980. In Dehydrogenases Requiring Nicotinamide Coenzymes, ed. J Jeffery 149–80 Basel: Birkhäuser
  61. Wang PJ, Chabes A, Casagrande R, Tian XC, Thelander L, Huffaker TC. 1997. Mol. Cell. Biol. 17:6114–121 [Google Scholar]
  62. Liuzzi M, Déziel R, Moss N, Beaulieu P, Bonneau A-M. et al. 1994. Nature 372:695–98 [Google Scholar]
  63. Booker S, Licht S, Broderick J, Stubbe J. 1994. Biochemistry 33:12676–85 [Google Scholar]
  64. Reichard P. 1993. J. Biol. Chem. 268:8383–86 [Google Scholar]
  65. Ollagnier S, Mulliez E, Schmidt PP, Eliasson R, Gaillard J. et al. 1997. J. Biol. Chem. 272:24201–23 [Google Scholar]
  66. Åslund F, Ehn B, Miranda-Vizuete A, Pueyo C, Holmgren A. 1994. Proc. Natl. Acad. Sci. USA 91:9813–17 [Google Scholar]
  67. Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J-Å. 1997. J. Biol. Chem. 272:2936–41 [Google Scholar]
  68. Miranda-Vizuete A, Damdimopulos A, Gustafsson J-Å, Spyrou G. 1997. J. Biol. Chem. In press [Google Scholar]
  69. Eliasson R, Reichard P, Mulliez E, Ollagnier S, Fontecave M. et al. 1995. Biochem. Biophys. Res. Commun. 214:28–35 [Google Scholar]
  70. Durham LJ, Larsson A, Reichard P. 1967. Eur. J. Biochem. 1:92–95 [Google Scholar]
  71. Batterham TJ, Ghambeer RK, Blakley RL, Brownson C. 1967. Biochemistry 6:1203–8 [Google Scholar]
  72. Stubbe J, Ator M, Krenitzky T. 1983. J. Biol. Chem. 258:1625–30 [Google Scholar]
  73. Thelander L, Larsson B, Hobbs J, Eckstein F. 1976. J. Biol. Chem. 251:1398–1405 [Google Scholar]
  74. Ator M, Stubbe J. 1985. Biochemistry 24:7214–21 [Google Scholar]
  75. Harris G, Ashley GW, Robins MJ, Tolman RL, Stubbe J. 1987. Biochemistry 26:1895–1902 [Google Scholar]
  76. Mao SS, Holler TP, Bollinger JM, Yu GX, Johnston MI, Stubbe J. 1992. Biochemistry 31:9744–51 [Google Scholar]
  77. Mao SS, Yu GX, Chalfoun D, Stubbe J. 1992. Biochemistry 31:9752–59 [Google Scholar]
  78. Persson AL, Eriksson M, Katherle B, Pötsch S, Sahlin M, Sjöberg B-M. 1997. J. Biol. Chem. In press [Google Scholar]
  79. Eliasson R, Pontis E, Eckstein F, Reichard P. 1994. J. Biol. Chem. 269:26116–20 [Google Scholar]
  80. Climent I, Sjöberg B-M, Huang CY. 1992. Biochemistry 31:4801–7 [Google Scholar]
  81. Ekberg M, Sahlin M, Eriksson M, Sjöberg B-M. 1996. J. Biol. Chem. 271:20655–59 [Google Scholar]
  82. Persson BO, Karlsson M, Climent I, Ling JS, Sanders-Loehr J. et al. 1996. J. Biol. Inorg. Chem. 1:247–56 [Google Scholar]
  83. Rova U, Goodtzova K, Ingemarson R, Behravan G, Gräslund A, Thelander L. 1995. Biochemistry 34:4267–75 [Google Scholar]
  84. Fontecave M, Eliasson R, Reichard P. 1989. J. Biol. Chem. 264:9164–70 [Google Scholar]
  85. Coves J, Delon B, Climent I, Sjöberg B-M, Fontecave M. 1995. Eur. J. Biochem. 233:357–63 [Google Scholar]
  86. Frey M, Rothe M, Wagner AFV, Knappe J. 1994. J. Biol. Chem. 269:12432–37 [Google Scholar]
  87. Knappe J, Wagner AFV. 1995. Methods Enzymol. 258:343–62 [Google Scholar]
  88. Wong KK, Murray BW, Lewisch SA, Baxter MK, Ridky TW. et al. 1993. Biochemistry 32:14102–10 [Google Scholar]
  89. Broderick JB, Duderstadt RE, Fernandez DC, Wojtuszewski K, Henshaw TF, Johnson MK. 1997. J. Am. Chem. Soc. 119:7396–97 [Google Scholar]
  90. Frey PA, Reed GH. 1993. Adv. Enzymol. Relat. Areas Mol. Biol. 66:1–39 [Google Scholar]
  91. Reed GH, Bollinger MD. 1995. Methods Enzymol. 258:362–77 [Google Scholar]
  92. Kunz BA, Kohalmi SE, Kunkel TA, Mathews CK, McIntosh EM, Reidy JA. 1994. Mutat. Res. 318:1–64 [Google Scholar]
  93. Thelander L, Reichard P. 1979. Annu. Rev. Biochem. 48:133–58 [Google Scholar]
  94. Eliasson R, Pontis E, Sun XY, Reichard P. 1994. J. Biol. Chem. 269:26052–57 [Google Scholar]
  95. Averett DR, Furman PA, Spector T. 1984. J. Virol. 52:981–83 [Google Scholar]
  96. Nikas I, McLauchlan J, Davison AJ, Taylor WR, Clements JB. 1986. Proteins 1:376–84 [Google Scholar]
  97. Berglund O. 1972. J. Biol. Chem. 247:7276–81 [Google Scholar]
  98. Hofer A, Schmidt PP, Gräslund A, Thelander L. 1997. Proc. Natl. Acad. Sci. USA 94:6959–64 [Google Scholar]
  99. Caras IW, Martin DW Jr. 1988. Mol. Cell. Biol. 8:2698–704 [Google Scholar]
  100. Reichard P. 1988. Annu. Rev. Biochem. 57:349–74 [Google Scholar]
  101. Bianchi V, Borella S, Rampazzo C, Ferraro P, Calderazzo F. et al. 1997. J. Biol. Chem. 272:16118–24 [Google Scholar]
  102. Carlson J, Fuchs JA, Messing J. 1984. Proc. Natl. Acad. Sci. USA 81:4292–97 [Google Scholar]
  103. Jordan A, Gibert I, Barbé J. 1995. Gene 167:75–79 [Google Scholar]
  104. Sun L, Fuchs JA. 1992. Mol. Biol. Cell 3:1095–105 [Google Scholar]
  105. Fuchs JA. 1977. J. Bacteriol. 130:957–59 [Google Scholar]
  106. Augustin LB, Jacobson BA, Fuchs JA. 1994. J. Bacteriol. 176:378–87 [Google Scholar]
  107. Sun L, Fuchs JA. 1994. J. Bacteriol. 176:4617–26 [Google Scholar]
  108. Sun L, Jacobson BA, Dien BS, Srienc F, Fuchs JA. 1994. J. Bacteriol. 176:2415–26 [Google Scholar]
  109. Yang F, Curran SC, Li L-S, Avarbock D, Graf JD. et al. 1997. J. Bacteriol. 179:6408–15 [Google Scholar]
  110. Sun XY, Harder J, Krook M, Jörnvall H, Sjöberg B-M, Reichard P. 1992. Proc. Natl. Acad. Sci. USA 90:577–81 [Google Scholar]
  111. Garriga X, Eliasson R, Torrents E, Jordan A, Barbé J. et al. 1996. Biochem. Biophys. Res. Commun. 229:189–92 [Google Scholar]
  112. Turner MK, Abrams R, Lieberman I. 1968. J. Biol. Chem. 243:3725–28 [Google Scholar]
  113. Elford HL, Freese M, Passamani E, Morris HP. 1970. J. Biol. Chem. 245:5228–33 [Google Scholar]
  114. Nordenskjöld BA, Skoog L, Brown NC, Reichard P. 1970. J. Biol. Chem. 245:5360–68 [Google Scholar]
  115. Eriksson S, Gräslund A, Skog S, Thelander L, Tribukait B. 1984. J. Biol. Chem. 259:11695–700 [Google Scholar]
  116. Engström Y, Eriksson S, Jildevik I, Skog S, Thelander L, Tribukait B. 1985. J. Biol. Chem. 260:9114–16 [Google Scholar]
  117. Mann GJ, Musgrove EA, Fox RM, Thelander L. 1988. Cancer Res. 48:5151–56 [Google Scholar]
  118. Björklund S, Skog S, Tribukait B, Thelander L. 1990. Biochemistry 29:5452–58 [Google Scholar]
  119. Björklund S, Hjortsberg K, Johansson E, Thelander L. 1993. Proc. Natl. Acad. Sci. USA 90:11322–26 [Google Scholar]
  120. Johansson E, Skogman E, Thelander L. 1995. J. Biol. Chem. 270:23698–704 [Google Scholar]
  121. Chen FY, Amara FM, Wright JA. 1994. Nucleic Acids Res. 22:4796–97 [Google Scholar]
  122. Filatov D, Thelander L. 1995. J. Biol. Chem. 270:25239–43 [Google Scholar]
  123. Björklund S, Skogman E, Thelander L. 1992. EMBO J. 11:4953–59 [Google Scholar]
  124. Amara FM, Sun J, Wright JA. 1996. J. Biol. Chem. 271:22126–31 [Google Scholar]
  125. Chan AK, Litchfield DW, Wright JA. 1993. Biochemistry 32:12835–40 [Google Scholar]
  126. Fan H, Villegas C, Wright JA. 1996. Proc. Natl. Acad. Sci. USA 93:14036–40 [Google Scholar]
  127. Filatov D, Björklund S, Johansson E, Thelander L. 1996. J. Biol. Chem. 271:23698–704 [Google Scholar]
  128. Elledge SJ, Zhou Z, Allen JB. 1992. Trends Biochem. Sci. 17:119–23 [Google Scholar]
  129. Elledge SJ, Zhou Z, Allen JB, Navas TA. 1993. BioEssays 15:333–39 [Google Scholar]
  130. Berglund O, Karlström O, Reichard P. 1969. Proc. Natl. Acad. Sci. USA 62:829–35 [Google Scholar]
  131. Young P, Öhman M, Sjöberg B-M. 1994. J. Biol. Chem. 269:27815–18 [Google Scholar]
  132. Sjöberg B-M, Hahne S, Mathews CZ, Mathews CK, Rand KN, Gait MJ. 1986. EMBO J. 5:2031–36 [Google Scholar]
  133. Chung TD, Wymer JP, Smith CC, Kulka M, Aurelian L. 1989. J. Virol. 63:3389–98 [Google Scholar]
  134. Cooper J, Conner J, Clements JB. 1995. J. Virol. 69:4979–85 [Google Scholar]
  135. Benner SA, Ellington AD, Tauer A. 1989. Proc. Natl. Acad. Sci. USA 86:7054–58 [Google Scholar]
  136. Booker S, Stubbe J. 1993. Proc. Natl. Acad. Sci. USA 90:8352–56 [Google Scholar]
  137. Wächtershäuser G. 1990. Proc. Natl. Acad. Sci. USA 87:200–4 [Google Scholar]
  138. Sze IS-Y, McFarlan SC, Spormann A, Hogenkamp HPC. 1992. Biochem. Biophys. Res. Commun. 184:1101–7 [Google Scholar]
  139. Sando GN, Hogenkamp HPC. 1973. Biochemistry 12:3316–22 [Google Scholar]
  140. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E. et al. 1996. DNA Res. 3:109–36 [Google Scholar]
  141. Yau S, Wachsman JT. 1973. Mol. Cell. Biochem. 1:101–5 [Google Scholar]
  142. Tsai PK, Hogenkamp HPC. 1980. J. Biol. Chem. 255:1273–78 [Google Scholar]
  143. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG. et al. 1997. Nature 388:539–47 [Google Scholar]
  144. Cowles JR, Evans HJ, Russell SA. 1969. J. Bacteriol. 97:1460–65 [Google Scholar]
  145. Nilsson O, Åberg A, Lundqvist T, Sjöberg B-M. 1988. Nucleic Acids Res. 16:4174 [Google Scholar]
  146. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V. et al. 1997. Science 227:1453–74 [Google Scholar]
  147. Sjöberg B-M. 1995. Nucleic Acids Mol. Biol. 9:192–221 [Google Scholar]
  148. Hamilton FD. 1974. J. Biol. Chem. 249:4428–34 [Google Scholar]
  149. Tseng MJ, Hilfinger JM, Walsh A, Greenberg GR. 1988. J. Biol. Chem. 263:16242–51 [Google Scholar]
  150. Hatfull GF, Sarkis GJ. 1993. Mol. Microbiol. 7:395–405 [Google Scholar]
  151. Harder J. 1993. FEMS Microbiol. Rev. 12:273–92 [Google Scholar]
  152. Thompson JD, Higgins DG, Gibson TJ. 1994. Nucleic Acids Res. 22:4673–80 [Google Scholar]
  153. Kornberg A. 1997. Trends Biochem. Sci. 22:282–83 [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.71
Loading
/content/journals/10.1146/annurev.biochem.67.1.71
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error