1932

Abstract

Synthetic oligonucleotide analogs have greatly aided our understanding of several biochemical processes. Efficient solid-phase and enzyme-assisted synthetic methods and the availability of modified base analogs have added to the utility of such oligonucleotides. In this review, we discuss the applications of synthetic oligonucleotides that contain backbone, base, and sugar modifications to investigate the mechanism and stereochemical aspects of biochemical reactions. We also discuss interference mapping of nucleic acid–protein interactions; spectroscopic analysis of biochemical reactions and nucleic acid structures; and nucleic acid cross-linking studies.

The automation of oligonucleotide synthesis, the development of versatile phosphoramidite reagents, and efficient scale-up have expanded the application of modified oligonucleotides to diverse areas of fundamental and applied biological research. Numerous reports have covered oligonucleotides for which modifications have been made of the phosphodiester backbone, of the purine and pyrimidine heterocyclic bases, and of the sugar moiety; these modifications serve as structural and mechanistic probes. In this chapter, we review the range, scope, and practical utility of such chemically modified oligonucleotides. Because of space limitations, we discuss only those oligonucleotides that contain phosphate and phosphate analogs as internucleotidic linkages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.99
1998-07-01
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.99.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.99&mimeType=html&fmt=ahah

Literature Cited

  1. Caruthers MH, Beaton G, Wu JV, Wiesler W. 1992. Methods Enzymol. 211:3–20 [Google Scholar]
  2. Beaucage SL. 1993. Methods Mol. Biol. 20:33–61 [Google Scholar]
  3. Brown T, Brown DJS. 1991. In Oligonucleotides and Analogues. A Practical Approach, ed. F Eckstein 1–24 Oxford: IRL
  4. Wincott F, Direnzo A, Grimm S, Tracz D, Workman C. et al. 1995. Nucleic Acids Res. 23:2677–84 [Google Scholar]
  5. Davis RH. 1995. Curr. Opin. Biotechnol. 6:213–17 [Google Scholar]
  6. Gait MJ, Pritchard C, Slim G. 1991. See Ref. 3 25–48
  7. Zon G, Stec WJ. 1991. See Ref. 3 87–108
  8. Wiesler WT, Marshall WS, Caruthers MH. 1993. Methods Mol. Biol. 20:191–206 [Google Scholar]
  9. Miller PS, Cushman CD, Levis JT. 1991. See Ref. 3 137–54
  10. Maunders MJ. 1993. Methods Mol. Biol. 16:213–30 [Google Scholar]
  11. Yu YT, Steitz JA. 1997. RNA 3:807–10 [Google Scholar]
  12. Eggerding FA, Iovannisci DM, Brinson E, Grossman P, Winn-Deen ES. 1995. Hum. Mutat. 5:153–65 [Google Scholar]
  13. Martinelli RA, Arruda JC, Dwivedi P. 1996. Clin. Chem. 42:14–18 [Google Scholar]
  14. Barrio JR, Barrio MCG, Leonard NJ, England TE, Uhlenbeck OC. 1978. Biochemistry 17:2077–81 [Google Scholar]
  15. Voegel JJ, Benner SA. 1996. Helv. Chim. Acta 79:1881–98 [Google Scholar]
  16. Cosstick R, McLaughlin LW, Eckstein F. 1984. Nucleic Acids Res. 12:1791–810 [Google Scholar]
  17. Kinoshita Y, Nishigaki K, Husimi Y. 1996. Chem. Lett. 9:797–98 [Google Scholar]
  18. Breitschopf K, Gross HJ. 1996. Nucleic Acids Res. 24:405–10 [Google Scholar]
  19. Ohtsuki T, Kawai G, Watanabe Y, Kita K, Nishikawa K, Watanabe K. 1996. Nucleic Acids Res. 24:662–67 [Google Scholar]
  20. Moore MJ, Sharp PA. 1992. Science 256:992–97 [Google Scholar]
  21. Bain JD, Switzer C. 1992. Nucleic Acids Res. 20:4372 [Google Scholar]
  22. Eckstein F. 1985. Annu. Rev. Biochem. 54:367–402 [Google Scholar]
  23. Griffiths AD, Potter BVL, Eperon IC. 1987. Nucleic Acids Res. 15:4145–62 [Google Scholar]
  24. Hacia JG, Wold BJ, Dervan PB. 1994. Biochemistry 33:5367–69 [Google Scholar]
  25. Tang JY, Roskey A, Li Y, Agrawal S. 1995. Nucleosides Nucleotides 14:985–90 [Google Scholar]
  26. Milligan JF, Uhlenbeck OC. 1989. Methods Enzymol. 180:51–62 [Google Scholar]
  27. Conrad E, Hanne A, Gaur RK, Krupp G. 1995. Nucleic Acids Res. 23:1845–53 [Google Scholar]
  28. Sousa R, Padilla R. 1995. EMBO J. 14:4609–21 [Google Scholar]
  29. Aurup H, Williams DM, Eckstein F. 1992. Biochemistry 31:9636–41 [Google Scholar]
  30. Huang Y, Eckstein F, Padilla R, Sousa R. 1997. Biochemistry 36:8231–42 [Google Scholar]
  31. Burgin AB, Pace NR. 1990. EMBO J. 9:4111–18 [Google Scholar]
  32. Zhang-Keck Z-y, Eckstein F, Washington LD, Stallcup MR. 1988. J. Biol. Chem. 263:9550–56 [Google Scholar]
  33. Igloi G. 1988. Biochemistry 27:3842–49 [Google Scholar]
  34. Logsdon N, Lee CGL, Harper JW. 1992. Anal. Biochem. 205:36–41 [Google Scholar]
  35. Vaish NK, Heaton PA, Eckstein F. 1997. Biochemistry 36:6495–501 [Google Scholar]
  36. Goodchild J. 1990. Bioconjug. Chem. 1:165–87 [Google Scholar]
  37. Bongartz JP, Aubertin AM, Milhaud PG, Lebleu B. 1994. Nucleic Acids Res. 22:4681–88 [Google Scholar]
  38. Soukchareun S, Tregear GW, Haralambidis J. 1995. Bioconjug. Chem. 6:43–53 [Google Scholar]
  39. Corey DR, Munoz-Medellin D, Huang A. 1995. Bioconjug. Chem. 6:93–100 [Google Scholar]
  40. Ruth JL. 1994. Methods Mol. Biol. 26:167–85 [Google Scholar]
  41. Hangeland JJ, Levis JT, Lee YC, T′so POP. 1995. Bioconjug. Chem. 6:695–701 [Google Scholar]
  42. Shea RG, Marsters JC, Bischofberger N. 1990. Nucleic Acids Res. 18:3777–83 [Google Scholar]
  43. Buijsman RC, Kuijpers WHA, Basten JEM, Kuylyeheskiely E, Vandermarel GA. et al. 1996. Chemistry 2:1572–77 [Google Scholar]
  44. Will DW, Brown T. 1992. Tetrahedron Lett. 33:2729–32 [Google Scholar]
  45. Letsinger RL, Zhang G, Sun DK, Ikeuchi T, Sarin PS. 1989. Proc. Natl. Acad. Sci. USA 86:6553–56 [Google Scholar]
  46. Zelphatti O, Wagner E, Leserman L. 1994. Antiviral Res. 25:13–25 [Google Scholar]
  47. Henderson GB, Stein CA. 1995. Nucleic Acids Res. 23:3726–31 [Google Scholar]
  48. Hagmar P, Bailey M, Tong G, Haralambidis J, Sawyer WH, Davidson BE. 1995. Biochim. Biophys. Acta Gen. Subj. 1244:259–68 [Google Scholar]
  49. Soukup GA, Cerny RL, Maher LJ. 1995. Bioconjug. Chem. 6:135–38 [Google Scholar]
  50. Holtke HJ, Ankenbauer W, Muhlegger K, Rein R, Sagner G. et al. 1995. Cell. Mol. Biol. 41:883–905 [Google Scholar]
  51. Stec WJ, Grajkowski A, Kobylanska A, Karwowski B, Koziolkiewicz M. et al. 1995. J. Am. Chem. Soc. 117:12019–29 [Google Scholar]
  52. Connolly BA, Potter BVL, Eckstein F, Pingoud A, Grotjahn L. 1984. Biochemistry 23:3443–53 [Google Scholar]
  53. Grasby JA, Connolly BA. 1992. Biochemistry 31:7855–61 [Google Scholar]
  54. Engelman A, Mizuuchi K, Craigie R. 1991. Cell 67:1211–21 [Google Scholar]
  55. Mizuuchi K, Adzuma K. 1991. Cell 66:129–40 [Google Scholar]
  56. Kurpiewski MR, Koziolkiewicz M, Wilk A, Stec WJ, Jen-Jacobson L. 1996. Biochemistry 35:8846–54 [Google Scholar]
  57. Thorogood H, Grasby JA, Connolly BA. 1996. J. Biol. Chem. 271:8855–62 [Google Scholar]
  58. McSwiggen JA, Cech TR. 1989. Science 244:679–83 [Google Scholar]
  59. Rajagopal J, Doudna JA, Szostak JW. 1989. Science 244:692–94 [Google Scholar]
  60. Moore MJ, Sharp PA. 1993. Nature 365:364–68 [Google Scholar]
  61. Maschhoff KL, Padgett RA. 1993. Nucleic Acids Res. 21:5456–62 [Google Scholar]
  62. Chanfreau G, Jacquier A. 1994. Science 266:1383–87 [Google Scholar]
  63. Padgett RA, Podar M, Boulanger SC, Perlman PS. 1994. Science 266:1685–88 [Google Scholar]
  64. Sharp PA. 1994. Cell 77:805–15 [Google Scholar]
  65. van Tol H, Buzayan JM, Feldstein PA, Eckstein F, Bruenig G. 1990. Nucleic Acids Res. 18:1971–75 [Google Scholar]
  66. Slim G, Gait MJ. 1991. Nucleic Acids Res. 19:1183–88 [Google Scholar]
  67. Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68–74 [Google Scholar]
  68. Scott WG, Finch JT, Klug A. 1995. Cell 81:991–1002 [Google Scholar]
  69. Kitts PA, Nash HA. 1988. J. Mol. Biol. 204:95–107 [Google Scholar]
  70. Herschlag D, Piccirilli JA, Cech TR. 1991. Biochemistry 30:4844–54 [Google Scholar]
  71. Polesky AH, Dahlberg ME, Benkovic SJ, Grindley NDF, Joyce CM. 1992. J. Biol. Chem. 267:8417–28 [Google Scholar]
  72. Noel JP, Hamm HE, Sigler PB. 1993. Nature 366:654–63 [Google Scholar]
  73. Gish G, Eckstein F. 1988. Science 240:1520–22 [Google Scholar]
  74. Schatz D, Leberman R, Eckstein F. 1991. Proc. Natl. Acad. Sci. USA 88:6132–36 [Google Scholar]
  75. Waring RB. 1989. Nucleic Acids Res. 17:10281–93 [Google Scholar]
  76. Christian EL, Yarus M. 1993. Biochemistry 32:4475–80 [Google Scholar]
  77. Jaffe EK, Cohn M. 1979. J. Biol. Chem. 254:10839–45 [Google Scholar]
  78. Pecoraro VL, Hermes JD, Cleland WW. 1984. Biochemistry 23:5262–71 [Google Scholar]
  79. Milligan JF, Uhlenbeck OC. 1989. Biochemistry 28:2849–55 [Google Scholar]
  80. Biou V, Yaremchuk A, Tukalo M, Cusack S. 1994. Science 263:1404–10 [Google Scholar]
  81. Rudinger J, Puglisi JD, Pütz J, Schatz D, Eckstein F. et al. 1992. Proc. Natl. Acad. Sci. USA 89:5882–86 [Google Scholar]
  82. Kreutzer R, Kern D, Giege R, Rudinger J. 1995. Nucleic Acids Res. 23:4598–4602 [Google Scholar]
  83. Caprara MG, Mohr G, Lambowitz AM. 1996. J. Mol. Biol. 257:512–31 [Google Scholar]
  84. Caprara MG, Lehnert V, Lambowitz AM, Westhof E. 1996. Cell 87:1135–45 [Google Scholar]
  85. Dabrowski M, Spahn CMT, Nierhaus KH. 1995. EMBO J. 14:4872–82 [Google Scholar]
  86. Harris ME, Pace NR. 1995. RNA 1:210–18 [Google Scholar]
  87. Hardt WD, Warnecke JM, Erdmann VA, Hartmann RK. 1995. EMBO J. 14:2935–44 [Google Scholar]
  88. Warnecke JM, Fürste JP, Hardt WD, Erdmann VA, Hartmann RK. 1996. Proc. Natl. Acad. Sci. USA 93:8924–28 [Google Scholar]
  89. Chen Y, Li XQ, Gegenheimer P. 1997. Biochemistry 36:2425–38 [Google Scholar]
  90. Strobel SA, Shetty K. 1997. Proc. Natl. Acad. Sci. USA 94:2903–8 [Google Scholar]
  91. Ruffner DE, Uhlenbeck OC. 1990. Nucleic Acids Res. 18:6025–29 [Google Scholar]
  92. Knöll R, Bald R, Fürste JP. 1997. RNA 3:132–40 [Google Scholar]
  93. Scott WG, Murray JB, Arnold JRP, Stoddard BL, Klug A. 1996. Science 274:2065–69 [Google Scholar]
  94. Dahm SC, Uhlenbeck OC. 1991. Biochemistry 30:9464–69 [Google Scholar]
  95. Mitrasinovic O, Epstein LM. 1997. Nucleic Acids Res. 25:2189–96 [Google Scholar]
  96. Jeoung Y-H, Kumar PKR, Suh Y-A, Taira K, Nishikawa S. 1994. Nucleic Acids Res. 22:3722–27 [Google Scholar]
  97. De Clercq E, Eckstein F, Sternbach H, Merigan TC. 1970. Virology 42:421–28 [Google Scholar]
  98. Agrawal S. 1996. Trends Biotechnol. 14:376–87 [Google Scholar]
  99. Huang JC, Svoboda DL, Reardon JT, Sancar A. 1992. Proc. Natl. Acad. Sci. USA 89:3664–68 [Google Scholar]
  100. Reardon JT, Thompson LH, Sancar A. 1997. Nucleic Acids Res. 25:1015–21 [Google Scholar]
  101. Gupta AP, Benkovic PA, Benkovic SJ. 1984. Nucleic Acids Res. 12:5897–911 [Google Scholar]
  102. Skerra A. 1992. Nucleic Acids Res. 20:3551–54 [Google Scholar]
  103. Nakamaye K, Eckstein F. 1986. Nucleic Acids Res. 14:9679–98 [Google Scholar]
  104. Sayers JR, Schmidt W, Eckstein F. 1988. Nucleic Acids Res. 16:791–801 [Google Scholar]
  105. Olsen DB, Kotzorek G, Eckstein F. 1990. Biochemistry 29:9546–51 [Google Scholar]
  106. Walker GT, Nadeau JG, Spears PA, Schram JL, Nycz CM, Shank DD. 1994. Nucleic Acids Res. 22:2670–77 [Google Scholar]
  107. Walter NG, Strunk G. 1994. Proc. Natl. Acad. Sci. USA 91:7937–41 [Google Scholar]
  108. Musier-Forsyth K, Schimmel P. 1994. Biochemistry 33:773–79 [Google Scholar]
  109. Fidanza JA, Ozaki H, McLaughlin LW. 1992. J. Am. Chem. Soc. 114:5509–17 [Google Scholar]
  110. Yang W, Steitz TA. 1995. Cell 82:193–207 [Google Scholar]
  111. König P, Giraldo R, Chapman L, Rhodes D. 1996. Cell 85:125–36 [Google Scholar]
  112. Francois J-C, Saison-Behmoaras T, Barbier C, Chassignol M, Thuong NT, Helene C. 1989. Proc. Natl. Acad. Sci. USA 86:9702–6 [Google Scholar]
  113. Gryaznov SM, Letsinger RL. 1993. Nucleic Acids Res. 21:1403–8 [Google Scholar]
  114. Chu BCF, Orgel LE. 1990. DNA Cell Biol. 9:71–76 [Google Scholar]
  115. Kang S-H, Xu X, Heidenreich O, Gryaznov S, Nerenberg M. 1995. Nucleic Acids Res. 23:2344–45 [Google Scholar]
  116. Gryaznov SM, Letsinger RL. 1993. J. Am. Chem. Soc. 115:3808–9 [Google Scholar]
  117. Mag M, Schmidt R, Engels JW. 1992. Tetrahedron Lett. 33:7319–22 [Google Scholar]
  118. Bannwarth W. 1988. Helv. Chim. Acta 71:1517–27 [Google Scholar]
  119. Mag M, Engels JW. 1989. Nucleic Acids Res. 17:5973–88 [Google Scholar]
  120. Letsinger RL, Mungall WS. 1970. J. Org. Chem. 35:3800–3 [Google Scholar]
  121. Chen J-K, Schultz RG, Lloyd DH, Gryaznov SM. 1995. Nucleic Acids Res. 23:2661–68 [Google Scholar]
  122. Gryaznov S, Skorski T, Cucco C, Nieborowska-Skorska M, Chiu CY. et al. 1996. Nucleic Acids Res. 24:1508–14 [Google Scholar]
  123. Mag M, Lüking S, Engels JW. 1991. Nucleic Acids Res. 19:1437–41 [Google Scholar]
  124. Vyle JS, Connolly BA, Kemp D, Cosstick R. 1992. Biochemistry 31:3012–18 [Google Scholar]
  125. Szczelkun MD, Connolly BA. 1995. Biochemistry 34:10724–33 [Google Scholar]
  126. Burgin AB, Huizenga BN, Nash HA. 1995. Nucleic Acids Res. 23:2973–79 [Google Scholar]
  127. Dantzman CL, Kiessling LL. 1996. J. Am. Chem. Soc. 118:11715–19 [Google Scholar]
  128. Piccirilli JA, Vyle JS, Caruthers MH, Cech TR. 1993. Nature 361:85–88 [Google Scholar]
  129. Weinstein LB, Jones BCNM, Cosstick R, Cech TR. 1997. Nature 388:805–8 [Google Scholar]
  130. Kuimelis RG, McLaughlin LW. 1996. J. Am. Chem. Soc. 35:5308–17 [Google Scholar]
  131. Zhou D-M, Usman N, Wincott FE, Matulic-Adamic J, Orita M. et al. 1996. J. Am. Chem. Soc. 118:5862–66 [Google Scholar]
  132. Thomson JB, Patel BK, Jimenez V, Eckart K, Eckstein F. 1996. J. Org. Chem. 61:6273–81 [Google Scholar]
  133. Beaton G, Dellinger D, Marshall WS, Caruthers MH. 1991. See Ref. 3 109–35
  134. Wiesler WT, Caruthers MH. 1996. J. Org. Chem. 61:4272–81 [Google Scholar]
  135. Greef CH, Seeberger PH, Caruthers MH, Beaton G, Bankaitisdavis D. 1996. Tetrahedron Lett. 37:4451–54 [Google Scholar]
  136. Cummins L, Graff D, Beaton G, Marshall WS, Caruthers MH. 1996. Biochemistry 35:8734–41 [Google Scholar]
  137. Piotto ME, Granger JN, Cho Y, Gorenstein DG. 1990. J. Am. Chem. Soc. 112:8632–34 [Google Scholar]
  138. Tonkinson JL, Guvakova M, Khaled Z, Lee J, Yakubov L. et al. 1994. Antisense Res. Dev. 4:269–74 [Google Scholar]
  139. Vaughn JP, Stekler J, Demirdji S, Mills JK, Caruthers MH. et al. 1996. Nucleic Acids Res. 24:4558–64 [Google Scholar]
  140. Marshall WS, Caruthers MH. 1993. Science 259:1564–70 [Google Scholar]
  141. Krieg AM, Matson S, Fisher E. 1996. Antisense Nucleic Acid Drug Dev. 6:133–39 [Google Scholar]
  142. Pirrung MC, Chidambaram N. 1996. J. Org. Chem. 61:1540–42 [Google Scholar]
  143. Reynolds MA, Hogrefe RI, Jaeger JA, Schwartz DA, Riley TA. et al. 1996. Nucleic Acids Res. 24:4584–91 [Google Scholar]
  144. Mujeeb A, Reynolds MA, James TL. 1997. Biochemistry 36:2371–79 [Google Scholar]
  145. Kean JM, Kipp SA, Miller PS, Kulka M, Aurelian L. 1995. Biochemistry 34:14617–20 [Google Scholar]
  146. Delong RK, Miller PS. 1996. Antisense Nucleic Acid Drug Dev. 6:273–80 [Google Scholar]
  147. Reynolds MA, Arnold LJ, Almazan MT, Beck TA, Hogrefe RI. et al. 1994. Proc. Natl. Acad. Sci. USA 91:12433–37 [Google Scholar]
  148. Strauss JK, Maher LJ. 1994. Science 266:1829–34 [Google Scholar]
  149. Strauss JK, Prakash TP, Roberts C, Switzer C, Maher LJ. 1996. Chem. Biol. 3:671–78 [Google Scholar]
  150. Botfield MC, Weiss MA. 1994. Biochemistry 33:2349–55 [Google Scholar]
  151. Hausheer FH, Singh UC, Palmer TC, Saxe JD. 1990. J. Am. Chem. Soc. 112:9468–74 [Google Scholar]
  152. Duckett DR, Murchie AIH, Lilley DMJ. 1990. EMBO J. 9:583–90 [Google Scholar]
  153. Seela F, Tran-Thi QH, Franzen D. 1982. Biochemistry 21:4338–43 [Google Scholar]
  154. Seela F, Driller H. 1986. Nucleic Acids Res. 14:2319–32 [Google Scholar]
  155. Seela F, Kehne A. 1985. Biochemistry 24:7556–61 [Google Scholar]
  156. Seela F, Grein T. 1992. Nucleic Acids Res. 20:2297–2306 [Google Scholar]
  157. Smith SA, Rajur SB, McLaughlin LW. 1994. Nat. Struct. Biol. 1:18–22 [Google Scholar]
  158. Zhang XL, Gottlieb PA. 1993. Biochemistry 32:11374–84 [Google Scholar]
  159. Duggan LJ, Hill TM, Wu S, Garrison K, Zhang XL, Gottlieb PA. 1995. J. Biol. Chem. 270:28049–54 [Google Scholar]
  160. Lesser DR, Kurpiewski MR, Jen-Jacobson L. 1990. Science 250:776–86 [Google Scholar]
  161. Aiken CR, Gumport RI. 1991. Methods Enzymol. 208:433–57 [Google Scholar]
  162. Murchie AIH, Lilley DMJ. 1994. EMBO J. 13:993–1001 [Google Scholar]
  163. Kim MG, Zhurkin VB, Jernigan RL, Camerini-Otero RD. 1995. J. Mol. Biol. 247:874–89 [Google Scholar]
  164. Wieczorek A, Dinter-Gottlieb G, Gottlieb PA. 1994. Bioorg. Med. Chem. Lett. 4:987–94 [Google Scholar]
  165. Murchie AIH, Lilley DMJ. 1992. Nucleic Acids Res. 20:49–53 [Google Scholar]
  166. Bevers S, Xiang GB, McLaughlin LW. 1996. Biochemistry 35:6483–90 [Google Scholar]
  167. Newman PC, Nwosu VU, Williams DM, Cosstick R, Seela F, Connolly BA. 1990. Biochemistry 29:9891–901 [Google Scholar]
  168. Limauro S, Benseler F, McLaughlin LW. 1994. Bioorg. Med. Chem. Lett. 4:2189–92 [Google Scholar]
  169. Pütz J, Florentz C, Benseler F, Giege R. 1994. Struct. Biol. 1:580–82 [Google Scholar]
  170. Adams CJ, Murray JB, Farrow FA, Arnold JRP, Stockley PG. 1995. Tetrahedron Lett. 36:5421–24 [Google Scholar]
  171. Min CH, Cushing TD, Verdine GL. 1996. J. Am. Chem. Soc. 118:6116–20 [Google Scholar]
  172. Cal S, Connolly BA. 1997. J. Biol. Chem. 272:490–96 [Google Scholar]
  173. Tuschl T, Ng MMP, Pieken W, Benseler F, Eckstein F. 1993. Biochemistry 32:11658–68 [Google Scholar]
  174. Grasby JA, Mersmann K, Singh M, Gait M. 1995. Biochemistry 34:4068–76 [Google Scholar]
  175. Liu Q, Green JB, Khodadadi A, Haeberli P, Beigelman L, Pyle AM. 1997. J. Mol. Biol. 267:163–71 [Google Scholar]
  176. Schweitzer BA, Kool ET. 1994. J. Org. Chem. 59:7238–42 [Google Scholar]
  177. McKay DB. 1996. RNA 2:395–403 [Google Scholar]
  178. McLaughlin LW, Wilson M, Ha SB. 1998. Comp. Nat. Prod. Chem. 7: In press [Google Scholar]
  179. Murray JB, Adams CJ, Arnold JRP, Stockley PG. 1995. Biochem. J. 311:487–94 [Google Scholar]
  180. Burgin AB, Gonzalez C, Matulic-Adamic J, Karpeisky AM, Usman N. et al. 1996. Biochemistry 35:14090–97 [Google Scholar]
  181. Mendelman LV, Kuimelis RG, McLaughlin LW, Richardson CC. 1995. Biochemistry 34:10187–93 [Google Scholar]
  182. Wagner RW, Matteucci MD, Lewis JG, Gutierrez AJ, Moulds C, Froehler BC. 1993. Science 260:1510–13 [Google Scholar]
  183. Moulds C, Lewis JG, Froehler BC, Grant D, Huang T. et al. 1995. Biochemistry 34:5044–53 [Google Scholar]
  184. Flanagan WM, Kothavale A, Wagner RW. 1996. Nucleic Acids Res. 24:2936–41 [Google Scholar]
  185. Wagner RW, Matteucci MD, Grant D, Huang T, Froehler BC. 1996. Nat. Biotechnol. 14:840–44 [Google Scholar]
  186. Sala M, Pezo V, Pochet S, Wain-Hobson S. 1996. Nucleic Acids Res. 24:3302–6 [Google Scholar]
  187. Loakes D, Brown DM. 1994. Nucleic Acids Res. 22:4039–43 [Google Scholar]
  188. Loakes D, Brown DM, Linde S, Hill F. 1995. Nucleic Acids Res. 23:2361–66 [Google Scholar]
  189. Nichols R, Andrews PC, Zhang P, Bergstrom DE. 1994. Nature 369:492–93 [Google Scholar]
  190. Bergstrom DE, Zhang P, Toma PH, Andrews PC, Nichols R. 1995. J. Am. Chem. Soc. 117:1201–9 [Google Scholar]
  191. Guo Z, Liu QH, Smith LM. 1997. Nat. Biotechnol. 15:331–35 [Google Scholar]
  192. Perrachi A, Beigelman L, Usman N, Herschlag D. 1996. Proc. Natl. Acad. Sci. USA 93:11522–27 [Google Scholar]
  193. Schmidt S, Beigelman L, Karpeisky A, Usman N, Sorensen US, Gait MJ. 1996. Nucleic Acids Res. 24:573–81 [Google Scholar]
  194. Beigelman L, Karpeisky A, Usman N. 1994. Bioorg. Med. Chem. Lett. 4:1715–20 [Google Scholar]
  195. Beigelman L, Karpeisky A, Matulic-Adamic J, Gonzalez C, Usman N. 1995. Nucleosides Nucleotides 14:907–10 [Google Scholar]
  196. Saenger W. 1983. Principles of Nucleic Acid Structure. New York: Springer-Verlag [Google Scholar]
  197. Bratty J, Chartrand P, Ferbeyre G, Cedergren R. 1993. Biochim. Biophys. Acta 1216:345–59 [Google Scholar]
  198. Yang J-H, Usman N, Chartrand P, Cedergren R. 1992. Biochemistry 31:5005–9 [Google Scholar]
  199. Olsen DB, Benseler F, Aurup H, Pieken WA, Eckstein F. 1991. Biochemistry 30:9735–41 [Google Scholar]
  200. Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F. 1991. Science 253:314–17 [Google Scholar]
  201. Paolella G, Sproat BS, Lamond AI. 1992. EMBO J. 11:1913–19 [Google Scholar]
  202. Jarvis TC, Wincott FE, Alby LJ, McSwiggen JA, Beigelman L. et al. 1996. J. Biol. Chem. 29107–12 [Google Scholar]
  203. Chowrira BM, Berzal-Herranz A, Keller CF, Burke JM. 1993. J. Biol. Chem. 268:19458–62 [Google Scholar]
  204. Pyle AM, Cech TR. 1991. Nature 350:628–31 [Google Scholar]
  205. Pyle AM, Murphy FL, Cech TR. 1992. Nature 358:123–28 [Google Scholar]
  206. Herschlag D, Eckstein F, Cech TR. 1993. Biochemistry 32:8299–311 [Google Scholar]
  207. Herschlag D, Eckstein F, Cech TR. 1993. Biochemistry 32:8312–21 [Google Scholar]
  208. Abramovitz DL, Friedman RA, Pyle AM. 1996. Science 271:1410–13 [Google Scholar]
  209. Hamm ML, Piccirilli JA. 1997. J. Org. Chem. 62:3415–20 [Google Scholar]
  210. Schärer OD, Kawate T, Gallinari P, Jiricny J, Verdine GL. 1997. Proc. Natl. Acad. Sci. USA 94:4878–83 [Google Scholar]
  211. Osborne SE, Ellington AD. 1997. Chem. Rev. 97:349–70 [Google Scholar]
  212. Jellinek D, Green LS, Bell C, Lynott CK, Gill N. et al. 1995. Biochemistry 34:11363–72 [Google Scholar]
  213. Lin Y, Nieuwlandt D, Magallanez A, Feistner B, Jayasena SD. 1996. Nucleic Acids Res. 24:3407–14 [Google Scholar]
  214. Lee S-W, Sullenger BA. 1997. Nat. Biotechnol. 15:41–45 [Google Scholar]
  215. Pagraitis NC, Bell C, Chang Y-F, Jennings S, Fitzwater T. et al. 1997. Nat. Biotechnol. 15:68–73 [Google Scholar]
  216. Barabino SM, Sproat BS, Ryder U, Blencowe BJ, Lamond AI. 1989. EMBO J. 8:4171–78 [Google Scholar]
  217. Blencowe BJ, Sproat BS, Ryder U, Barabino S, Lamond AI. 1989. Cell 59:531–39 [Google Scholar]
  218. Bardwell VJ, Wickens M, Bienroth S, Keller W, Sproat BS, Lamond AI. 1991. Cell 65:125–33 [Google Scholar]
  219. Froehler BC, Ricca DJ. 1992. J. Am. Chem. Soc. 114:8320–22 [Google Scholar]
  220. Bulychev NV, Varaprasad CV, Dorman G, Miller JH, Eisenberg M. et al. 1996. Biochemistry 35:13147–56 [Google Scholar]
  221. Burlina F, Favre A, Fourrey J-L, Thomas M. 1996. Chem. Commun.,1623–24 [Google Scholar]
  222. Hancox EL, Connolly BA, Walker RT. 1993. Nucleic Acids Res. 21:3485–91 [Google Scholar]
  223. Hess MT, Schwitter U, Petretta M, Giese B, Naegeli H. 1997. Biochemistry 36:2332–37 [Google Scholar]
  224. Schärer OD, Ortholand J-Y, Ganesan A, Ezaz-Nikpay K, Verdine GL. 1995. J. Am. Chem. Soc. 11:6623–24 [Google Scholar]
  225. Millar DP. 1996. Curr. Opin. Struct. Biol. 6:322–26 [Google Scholar]
  226. Ward DC, Reich E, Stryer L. 1969. J. Biol. Chem. 244:1228–37 [Google Scholar]
  227. Xu D, Evans KO, Nordlund TM. 1994. Biochemistry 33:9592–99 [Google Scholar]
  228. Guest CR, Hochstrasser RA, Sowers LC, Millar DP. 1991. Biochemistry 30:3271–79 [Google Scholar]
  229. Hochstrasser RA, Carver TE, Sowers LC, Millar DP. 1994. Biochemistry 33:11971–79 [Google Scholar]
  230. Bloom LB, Otto MR, Eritja R, Reha-Krantz LJ, Goodman MF, Beechem JM. 1994. Biochemistry 33:7576–86 [Google Scholar]
  231. Marquez LA, Reha-Krantz LJ. 1996. J. Biol. Chem. 271:28903–11 [Google Scholar]
  232. Bloom LB, Otto MR, Beechem JM, Goodman MF. 1993. Biochemistry 32:11247–58 [Google Scholar]
  233. Frey MW, Sowers LC, Millar DP, Benkovic SJ. 1995. Biochemistry 34:9185–92 [Google Scholar]
  234. Raney KD, Sowers LC, Millar DP, Benkovic SJ. 1994. Proc. Natl. Acad. Sci. USA 91:6644–48 [Google Scholar]
  235. Menger M, Tuschl T, Eckstein F, Porschke D. 1996. Biochemistry 35:14710–16 [Google Scholar]
  236. Hawkins ME, Pfleiderer W, Mazumder A, Pommier YG, Balis FM. 1995. Nucleic Acids Res. 23:2872–80 [Google Scholar]
  237. Wu PG, Nordlund TM, Gildea B, McLaughlin LW. 1990. Biochemistry 29:6508–14 [Google Scholar]
  238. Guest CR, Hochstrasser RA, Dupuy CG, Allen DJ, Benkovic SJ, Millar DP. 1991. Biochemistry 30:8759–70 [Google Scholar]
  239. Bailey M, Hagmar P, Millar DP, Davidson BE, Tong G. et al. 1995. Biochemistry 34:15802–12 [Google Scholar]
  240. Allen DJ, Darke PL, Benkovic SJ. 1989. Biochemistry 28:4601–7 [Google Scholar]
  241. Ozaki H, McLaughlin LW. 1992. Nucleic Acids Res. 20:5205–14 [Google Scholar]
  242. Fidanza JA, McLaughlin LW. 1992. J. Org. Chem. 57:2340–46 [Google Scholar]
  243. Lee LG, Connell CR, Woo SL, Cheng RD, McArdle BF. et al. 1992. Nucleic Acids Res. 20:2471–83 [Google Scholar]
  244. Ju JY, Glazer AN, Mathies RA. 1996. Nucleic Acids Res. 24:1144–48 [Google Scholar]
  245. Walter NG, Burke JM. 1997. RNA 3:392–404 [Google Scholar]
  246. Hustedt EJ, Kirchner JJ, Spalstenstein A, Hopkins PB, Robinson BH. 1995. Biochemistry 34:4369–75 [Google Scholar]
  247. Miller TR, Alley SC, Reese AW, Solomon MS, McCallister WV. et al. 1995. J. Am. Chem. Soc. 117:9377–78 [Google Scholar]
  248. Thorogood H, Waters TR, Parker AW, Wharton CW, Connolly BA. 1996. Biochemistry 35:8723–33 [Google Scholar]
  249. Ferentz AE, Keating TA, Verdine GL. 1993. J. Am. Chem. Soc. 115:9006–14 [Google Scholar]
  250. Ferentz AE, Verdine GL. 1994. Nucleic Acids Mol. Biol. 8:14–40 [Google Scholar]
  251. Allerson CR, Chen SL, Verdine GL. 1997. J. Am. Chem. Soc. 119:7423–33 [Google Scholar]
  252. Wolfe SA, Ferentz AE, Grantcharova V, Churchill MEA, Verdine GL. 1995. Chem. Biol. 2:213–21 [Google Scholar]
  253. Erlanson DA, Chen L, Verdine GL. 1993. J. Am. Chem. Soc. 115:12583–84 [Google Scholar]
  254. Allerson CR, Verdine GL. 1995. Chem. Biol. 2:667–75 [Google Scholar]
  255. Osborne SE, Völker J, Stevens SY, Breslauer KJ, Glick GD. 1996. J. Am. Chem. Soc. 118:11993–12003 [Google Scholar]
  256. Goodwin JT, Osborne SE, Scholle EJ, Glick GD. 1996. J. Am. Chem. Soc. 118:5207–15 [Google Scholar]
  257. Osborne SE, Cain RJ, Glick GD. 1997. J. Am. Chem. Soc. 119:1171–82 [Google Scholar]
  258. Milton J, Connolly BA, Nikiforov TT, Cosstick R. 1993. J. Chem. Soc. Chem. Commun.,779–80 [Google Scholar]
  259. Cowart M, Gibson KJ, Allen DJ, Benkovic SJ. 1989. Biochemistry 28:1975–83 [Google Scholar]
  260. Cowart M, Benkovic SJ. 1991. Biochemistry 30:788–96 [Google Scholar]
  261. Sigurdsson STh, Tuschl T, Eckstein F. 1995. RNA 1:575–83 [Google Scholar]
  262. Sigurdsson STh, Eckstein F. 1996. Nucleic Acids. Res. 24:3129–33 [Google Scholar]
  263. Deleted in proof
  264. Cohen SB, Cech TR. 1997. J. Am. Chem. Soc. 119:6259–68 [Google Scholar]
  265. Behlen LS, Sampson JR, Uhlenbeck OC. 1992. Nucleic Acids Res. 20:4055–59 [Google Scholar]
  266. Burke JM, Butcher SE, Sargueil B. 1996. Nucleic Acids Mol. Biol. 10:129–43 [Google Scholar]
  267. Nikiforov TT, Connolly BA. 1992. Nucleic Acids Res. 20:1209–14 [Google Scholar]
  268. Favre A, Michelson AM, Yaniv M. 1971. J. Mol. Biol. 58:367–79 [Google Scholar]
  269. Dontsova O, Kopylov A, Brimacombe R. 1991. EMBO J. 10:2613–20 [Google Scholar]
  270. McGregor A, Rao MV, Duckworth G, Stockley PG, Connolly BA. 1996. Nucleic Acids Res. 24:3173–80 [Google Scholar]
  271. Sontheimer EJ, Steitz JA. 1993. Science 262:1989–96 [Google Scholar]
  272. Mishima Y, Steitz JA. 1995. EMBO J. 14:2679–87 [Google Scholar]
  273. Yu Y-T, Steitz JA. 1997. Proc. Natl. Acad. Sci. USA 94:6030–35 [Google Scholar]
  274. Favre A, Fourrey J-L. 1995. Acc. Chem. Res. 28:375–82 [Google Scholar]
  275. Gott JM, Willis MC, Koch TH, Uhlenbeck OC. 1991. Biochemistry 30:6290–95 [Google Scholar]
  276. Willis MC, Hicke BJ, Uhlenbeck OC, Cech TR, Koch TH. 1993. Science 262:1255–57 [Google Scholar]
  277. Hicke BJ, Willis MC, Koch TH, Cech TR. 1994. Biochemistry 33:3364–73 [Google Scholar]
  278. Langer PR, Waldrop AA, Ward DC. 1981. Proc. Natl. Acad. Sci. USA 78:6633–37 [Google Scholar]
  279. Catalano CE, Allen DJ, Benkovic SJ. 1990. Biochemistry 29:3612–21 [Google Scholar]
  280. Capson TL, Benkovic SJ, Nossal NG. 1991. Cell 65:249–58 [Google Scholar]
  281. Reems JA, Wood S, McHenry CS. 1995. J. Biol. Chem. 270:5606–13 [Google Scholar]
  282. Sergiev PV, Lavrik IN, Wlasoff VA, Dokudovskaya SS, Dontsova OA. et al. 1997. RNA 3:464–75 [Google Scholar]
  283. Jayaram B, Haley BE. 1994. J. Biol. Chem. 269:3233–42 [Google Scholar]
  284. Chavan A, Nemoto Y, Narumiya S, Kozaki S, Haley BE. 1992. J. Biol. Chem. 267:14866–70 [Google Scholar]
  285. Wower J, Hixson SS, Zimmermann RA. 1989. Proc. Natl. Acad. Sci. USA 86:5232–36 [Google Scholar]
  286. Evans RK, Haley BE. 1987. Biochemistry 26:269–76 [Google Scholar]
  287. He BK, Riggs DL, Hanna MM. 1995. Nucleic Acids Res. 23:1231–38 [Google Scholar]
  288. Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC, Pace NR. 1994. EMBO J. 13:3953–63 [Google Scholar]
  289. Harris ME, Kazantsev AV, Chen J-L, Pace NR. 1997. RNA 3:561–76 [Google Scholar]
  290. Wang J-F, Downs WD, Cech TR. 1993. Science 260:504–8 [Google Scholar]
  291. Manchanda R, Dunham SU, Lippard SJ. 1996. J. Am. Chem. Soc. 118:5144–45 [Google Scholar]
  292. Boudvillain M, Guerin M, Dalbies R, Saison-Behmoaras T, Leng M. 1997. Biochemistry 36:2925–31 [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.99
Loading
/content/journals/10.1146/annurev.biochem.67.1.99
Loading

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error