Full text loading...
Abstract
Protein splicing is a form of posttranslational processing that consists of the excision of an intervening polypeptide sequence, the intein, from a protein, accompanied by the concomitant joining of the flanking polypeptide sequences, the exteins, by a peptide bond. It requires neither cofactors nor auxiliary enzymes and involves a series of four intramolecular reactions, the first three of which occur at a single catalytic center of the intein. Protein splicing can be modulated by mutation and converted to highly specific self-cleavage and protein ligation reactions that are useful protein engineering tools. Some of the reactions characteristic of protein splicing also occur in other forms of protein autoprocessing, ranging from peptide bond cleavage to conjugation with nonprotein moieties. These mechanistic similarities may be the result of convergent evolution, but in at least one case—hedgehog protein autoprocessing—there is definitely a close evolutionary relationship to protein splicing.