1932

Abstract

GTPase-activating proteins (GAPs) regulate heterotrimeric G proteins by increasing the rates at which their α subunits hydrolyze bound GTP and thus return to the inactive state. G protein GAPs act allosterically on Gα subunits, in contrast to GAPs for the Ras-like monomeric GTP-binding proteins. Although they do not contribute directly to the chemistry of GTP hydrolysis, G protein GAPs can accelerate hydrolysis >2000-fold. G protein GAPs include both effector proteins (phospholipase C-β, p115RhoGEF) and a growing family of regulators of G protein signaling (RGS proteins) that are found throughout the animal and fungal kingdoms. GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network. GAPs are regulated by various controls of their cellular concentrations, by complex interactions with Gβγ or with Gβ5 through an endogenous Gγ-like domain, and by interaction with multiple other proteins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.69.1.795
2000-07-01
2024-10-10
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.biochem.69.1.795
Loading
/content/journals/10.1146/annurev.biochem.69.1.795
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error