The ribosome discriminates between correct and incorrect aminoacyl-tRNAs (aa-tRNAs), or their complexes with elongation factor Tu (EF-Tu) and GTP, according to the match between anticodon and mRNA codon in the A site. Selection takes place at two stages, prior to GTP hydrolysis (initial selection) and after GTP hydrolysis but before peptide bond formation (proofreading). In part, discrimination results from different rejection rates that are due to different stabilities of the respective codon-anticodon complexes. An important additional contribution is provided by induced fit, in that only correct codon recognition leads to acceleration of rate-limiting rearrangements that precede chemical steps. Recent elucidation of ribosome structures and mutational analyses suggest which residues of the decoding center may be involved in signaling formation of the correct codon-anticodon duplex to the functional centers of the ribosome. In utilizing induced fit for substrate discrimination, the ribosome resembles other nucleic acid–programmed polymerases.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error