1932

Abstract

Fueled by ever-growing DNA sequence information, proteomics-the large scale analysis of proteins-has become one of the most important disciplines for characterizing gene function, for building functional linkages between protein molecules, and for providing insight into the mechanisms of biological processes in a high-throughput mode. It is now possible to examine the expression of more than 1000 proteins using mass spectrometry technology coupled with various separation methods. High-throughput yeast two-hybrid approaches and analysis of protein complexes using affinity tag purification have yielded valuable protein-protein interaction maps. Large-scale protein tagging and subcellular localization projects have provided considerable information about protein function. Finally, recent developments in protein microarray technology provide a versatile tool to study protein-protein, protein-nucleic acid, protein-lipid, enzyme-substrate, and protein-drug interactions. Other types of microarrays, though not fully developed, also show great potential in diagnostics, protein profiling, and drug identification and validation. This review discusses high-throughput technologies for proteome analysis and their applications. Also discussed are the approaches used for the integrated analysis of the voluminous sets of data generated by proteome analysis conducted on a global scale.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.72.121801.161511
2003-07-01
2024-06-13
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.biochem.72.121801.161511
Loading
/content/journals/10.1146/annurev.biochem.72.121801.161511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error