1932

Abstract

▪ Abstract 

In 1946, 14C-cyanide made its appearance as an offshoot of the Atomic Energy Program. Our colleague Robert Loftfield built it into 14C-alanine by the Strecker synthesis, and a lusty program directed toward uncovering the unknown mechanism of protein synthesis grew out of this beginning. The necessity for an undiscovered series of steps and enzymes was soon evident. A cell free system was developed, and a succession of components necessary for this new pathway tumbled out. ATP dependence, amino acid activation, the ribosome as the site of polypeptide formation, discovery of tRNA as the translation molecule linking the gene and protein sequence, and GTP as the essential energy ingredient in peptide chain extension all appeared from our laboratory within the next decade. A little later the APN family, whose functions remain imperfectly defined, of intracellular molecules was discovered. Isolation of specific species of RNA became a high priority, and we sequenced a small segment of the 3′ end of the Rous sarcoma virus, just inside the poly(A) tail, at the same time the Gilbert group at Harvard was sequencing the 5′ end. The sequence identity and polarity of the two ends suggested a circular intermediate in replication and predicted correctly that a synthetic antisense oligonucleotide targeted against this sequence might be a specific inhibitor of replication. More recently, we have evolved a technique that appears to achieve a trinucleotide insertion into tissue culture cells bearing a specific Δ508 mRNA triplet deletion, resulting in phenotypic reversion in the tissue culture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.74.050304.091632
2005-07-07
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/bi/74/1/annurev.biochem.74.050304.091632.html?itemId=/content/journals/10.1146/annurev.biochem.74.050304.091632&mimeType=html&fmt=ahah

Literature Cited

  1. Bergmann M. 1939. J. Mt. Sinai Hosp. NY 6:171–86 [Google Scholar]
  2. Bergmann M, Fruton JS. 1941. Adv. Enzymol. 1:63–98 [Google Scholar]
  3. Zamecnik PC. 1941. C. R. Trav. Lab. Carlsberg Ser. Clin. 24:59–67 [Google Scholar]
  4. Zamecnik PC, Lavin GI, Bergmann M. 1945. J. Biol. Chem. 158:537–45 [Google Scholar]
  5. McFarlane MG, Knight BCJG. 1941. Biochem. J. 35:884–901 [Google Scholar]
  6. Zamecnik PC, Brewster LE, Lipmann F. 1947. J. Exp. Med. 85:381–94 [Google Scholar]
  7. Zamecnik PC, Lipmann F. 1947. J. Exp. Med. 85:395–403 [Google Scholar]
  8. Lipmann F. 1941. Adv. Enzymol. 1:99–162 [Google Scholar]
  9. Kalckar H. 1941. Chem. Rev. 28:171–78 [Google Scholar]
  10. Loftfield RB. 1947. Nucleonics 1:54–57 [Google Scholar]
  11. Zamecnik PC, Frantz ID Jr, Loftfield RB, Stephenson ML. 1948. J. Biol. Chem. 175:299–314 [Google Scholar]
  12. Frantz ID Jr, Zamecnik PC, Reese JW, Stephenson ML. 1948. J. Biol. Chem. 174:773–74 [Google Scholar]
  13. Loftfield RB, Grover JW, Stephenson ML. 1953. Nature 171:1024–25 [Google Scholar]
  14. Moore S, Stein WH. 1948. J. Biol. Chem. 176:367–88 [Google Scholar]
  15. Zamecnik PC, Loftfield RB, Stephenson ML, Steele JM. 1951. Cancer Res. 11:592–602 [Google Scholar]
  16. Schoenheimer R. 1942. The Dynamic State of Body Constituents Cambridge, MA: Harvard Univ. Press [Google Scholar]
  17. Zamecnik PC, Keller EB. 1954. J. Biol. Chem. 209:337–53 [Google Scholar]
  18. Borsook H, Deasy CL, Haagen-Smit AJ, Keighly G, Lowy P. 1948. J. Biol. Chem. 174:1041–42 [Google Scholar]
  19. Winnick T, Friedberg F, Greenberg DM. 1948. J. Biol. Chem. 175:117–26 [Google Scholar]
  20. Siekevitz P, Zamecnik PC. 1951. Fed. Proc. 10:266 [Google Scholar]
  21. Siekevitz P. 1952. J. Biol. Chem. 195:549–65 [Google Scholar]
  22. Zamecnik PC. 1952. Annu. Rev. Biochem. 21:411–30 [Google Scholar]
  23. Gale EF. 1955. In Symposium on Amino Acid Metabolism ed. WD McElroy, HB Glass pp. 171–92 Baltimore, MD: Johns Hopkins Press [Google Scholar]
  24. Chantrenne H. 1948. Biochim. Biophys. Acta 2:286–93 [Google Scholar]
  25. Hoagland MB, Keller EB, Zamecnik PC. 1956. J. Biol. Chem. 218:354–58 [Google Scholar]
  26. Zamecnik PC, Keller EB. 1954. J. Biol. Chem. 209:337–54 [Google Scholar]
  27. Heidelberger CE, Harbers KC, Leibman Y, Tagagi Y, Potter VR. 1956. Biochim. Biophys. Acta 20:445–46 [Google Scholar]
  28. Rheinberger HJ. 1997. Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube pp. 148–49 Stanford, CA: Stanford Univ. Press [Google Scholar]
  29. Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC. 1958. J. Biol. Chem. 231:241–56 [Google Scholar]
  30. Zamecnik PC. 1960. The Harvey Lectures 1958–59 pp. 256–81 New York: Academic [Google Scholar]
  31. Loftfield RB. 1957. Prog. Biophys. Biophys. Chem. 8:347–86 [Google Scholar]
  32. Dintzis HM. 1961. Proc. Natl. Acad. Sci. USA 47:247–61 [Google Scholar]
  33. Keller EB, Zamecnik PC. 1956. J. Biol. Chem. 221:45–49 [Google Scholar]
  34. Keller EB, Zamecnik PC, Loftfield RB. 1954. J. Histochem. Cytochem. 2:378–86 [Google Scholar]
  35. Littlefield JW, Keller EB, Gross J, Zamecnik PC. 1955. J. Biol. Chem. 217:111–23 [Google Scholar]
  36. Lamborg M, Zamecnik PC. 1960. Biochim. Biophys. Acta 42:206–11 [Google Scholar]
  37. Tissieres A, Watson JD. 1958. Nature 182:778–80 [Google Scholar]
  38. Tissieres A, Schlessinger AD, Gros F. 1960. Proc. Natl. Acad. Sci. USA 46:1450–63 [Google Scholar]
  39. Nirenberg MW, Matthaei JH. 1961. Proc. Natl. Acad. Sci. USA 47:1588–602 [Google Scholar]
  40. Hoagland MB, Zamecnik PC, Stephenson ML. 1957. Biochim. Biophys. Acta 24:215–16 [Google Scholar]
  41. Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC. 1958. J. Biol. Chem. 231:241–56 [Google Scholar]
  42. Hoagland MB, Zamecnik PC, Stephenson ML. 1959. A Symposium on Molecular Biology ed. RE Zirkle pp. 105–14 Chicago, IL: Univ. Chicago Press. [Google Scholar]
  43. Zamecnik PC, Stephenson ML, Scott JF. 1960. Proc. Natl. Acad. Sci. USA 46:811–22 [Google Scholar]
  44. Stephenson ML, Zamecnik PC. 1961. Proc. Natl. Acad. Sci. USA 47:1627–35 [Google Scholar]
  45. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M. et al. 1965. Science 147:1462–65 [Google Scholar]
  46. Speyer JF, Lengyel P, Basilio C, Wahba AJ, Gardner RS, Ochoa S. 1963. Cold Spring Harbor Symp. Quant. Biol. 28:559–67 [Google Scholar]
  47. Khorana HG, Buchi H, Ghosh H, Gupta N, Jacob TM. et al. 1966. Cold Spring Harbor Symp. Quant. Biol. 31:39–49 [Google Scholar]
  48. Volkin E, Astrachan L. 1956. Virology 2:149–61 [Google Scholar]
  49. Riley M, Pardee AB, Jacob F, Monod J. 1960. J. Mol. Biol. 2:216–25 [Google Scholar]
  50. Brenner S, Jacob F, Meselson M. 1961. Nature 190:576–81 [Google Scholar]
  51. Gros F, Hiatt H, Gilbert W, Kurland CG, Risebrough RW, Watson JD. 1961. Nature 190:581–85 [Google Scholar]
  52. Zamecnik PC. 1979. Ann. NY Acad. Sci. 325:169–301 [Google Scholar]
  53. Zamecnik PC, Stephenson ML, Janeway CM, Randerath K. 1966. Biochem. Biophys. Res. Commun. 24:91–97 [Google Scholar]
  54. Randerath K, Janeway CM, Stephenson ML, Zamecnik PC. 1966. Biochem. Biophys. Res. Commun. 24:98–105 [Google Scholar]
  55. Zamecnik PC, Janeway CM, Randerath K, Stephenson ML. 1967. In Regulation of Nucleic Acid and Protein Synthesis ed. VV Koningsberger, L Bosch pp. 169–76 Amsterdam, Neth: Elsevier [Google Scholar]
  56. Scott JF, Zamecnik PC. 1969. Proc. Natl. Acad. Sci. USA 64:1308–14 [Google Scholar]
  57. Holler E, Holmquist B, Vallee BL, Taneja K, Zamecnik PC. 1983. Biochemistry 22:4924–33 [Google Scholar]
  58. Moffatt JG, Khorana HG. 1961. J. Am. Chem. Soc. 83:649–58 [Google Scholar]
  59. Rapaport E, Svihovec S, Zamecnik PC. 1975. Proc. Natl. Acad. Sci. USA 72:2653–57 [Google Scholar]
  60. Plesner P, Stephenson ML, Zamecnik PC, Bucher NLR. 1979. Alfred Benzon Symp., Munksgaard, Copenhagen pp. 383–94 New York: Academic [Google Scholar]
  61. Zamecnik PC. 1979. In Regulation of Macromolecular Synthesis of Low Molecular Weight Regulators ed. G Koch, D Richter pp. 1–3 New York: Academic [Google Scholar]
  62. Zamecnik PC, Rapaport E, Baril EF. 1982. Proc. Natl. Acad. Sci. USA 79:1791–94 [Google Scholar]
  63. Rapaport E, Zamecnik PC, Baril EF. 1981. Proc. Natl. Acad. Sci. USA 78:838–42 [Google Scholar]
  64. Kim BK, Chao FC, Leavitt R, Fauci AS, Meyers KM, Zamecnik PC. 1985. Blood 66:735–37 [Google Scholar]
  65. McLennan AG, Zamecnik PC. 1992. In Dinucleoside Phosphates in Metabolism ed. AG McLennan pp. 1–7 Boca Raton, FL: CRC Press [Google Scholar]
  66. Flodgaard H, Zamecnik PC, Meyers K, Klenow H. 1986. Thromb. Res. 37:345–51 [Google Scholar]
  67. Louie S, Kim BK, Zamecnik PC. 1988. Thromb. Res. 49:557–65 [Google Scholar]
  68. Kim BK, Zamecnik PC, Taylor G, Guo MJ, Blackburn GM. 1992. Proc. Natl. Acad. Sci. USA 89:11056–58 [Google Scholar]
  69. Flodgaard H, Klenow H. 1982. Biochem. J. 208:737–42 [Google Scholar]
  70. Chan SW, Gallo SJ, Kim BK, Guo MJ, Blackburn GM, Zamecnik PC. 1997. Proc. Natl. Acad. Sci. USA 94:4034–39 [Google Scholar]
  71. Elmaleh DR, Zamecnik PC, Castronovo FP Jr, Strauss HW, Rapaport E. 1984. Proc. Natl. Acad. Sci. USA 81:918–21 [Google Scholar]
  72. Elmaleh DR, Narula J, Babich JW, Petrov A, Rapaport E. et al. 1998. Proc. Natl. Acad. Sci. USA 95:691–95 [Google Scholar]
  73. Stephenson ML, Wirthlin LRS, Scott JF, Zamecnik PC. 1972. Proc. Natl. Acad. Sci. USA 69:1176–80 [Google Scholar]
  74. Haseltine W, Maxam A, Gilbert W. 1977. Proc. Natl. Acad. Sci. USA 69:989–93 [Google Scholar]
  75. Schwartz DE, Zamecnik PC, Weith HL. 1977. Proc. Natl. Acad. Sci. USA 74:994–98 [Google Scholar]
  76. Zamecnik PC, Stephenson ML. 1978. Proc. Natl. Acad. Sci. USA 75:280–84 [Google Scholar]
  77. Stephenson ML, Zamecnik PC. 1978. Proc. Natl. Acad. Sci. USA 75:285–88 [Google Scholar]
  78. Goodchild J. 2004. Curr. Opin. Mol. Ther. 6:119 [Google Scholar]
  79. Goodchild J. 2004. Curr. Opin. Mol. Ther. 6:120–28 [Google Scholar]
  80. Agrawal S, Kandimalla ER. 2002. Trends Mol. Med. 8:114–21 [Google Scholar]
  81. Kandimalla ER, Agrawal S. 2004. In Toll Receptors ed. T Rich pp. 1–32 New York: Kluwer Acad./Plenum [Google Scholar]
  82. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R. et al. 1989. Science 245:1066–73 [Google Scholar]
  83. Rommens JM, Iannuzzi MC, Kerem BS, Drumm ML, Melmer G. et al. 1989. Science 245:1059–65 [Google Scholar]
  84. Zamecnik PC, Raychowdhury MK, Tabatadze DR, Cantiello HF. 2004. Proc. Natl. Acad. Sci. USA 101:8150–55 [Google Scholar]
  85. Seidman MM, Glazer PM. 2004. Oligonucleotides 14:79 [Google Scholar]
  86. Gruenert DC, Kunzelmann K, Novelli G, Colosimo A, Kapsa R, Bruscia E. 2004. Oligonucleotides 14:157–58 [Google Scholar]
  87. Aran JM, DeSemir D. 2004. Oligonucleotides 14:158–60 [Google Scholar]
  88. Kobayashi K, Knowles MR, Boucher RC, O'Brien WE, Beaudet AL. 1990. Am. J. Hum. Genet. 47:611–15 [Google Scholar]
  89. Burkard ME, Turner DH, Tinoco I Jr. 1999. In The RNA World pp. 675–80 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
/content/journals/10.1146/annurev.biochem.74.050304.091632
Loading
/content/journals/10.1146/annurev.biochem.74.050304.091632
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error