▪ Abstract 

The underlying basis for the accuracy of protein synthesis has been the subject of over four decades of investigation. Recent biochemical and structural data make it possible to understand at least in outline the structural basis for tRNA selection, in which codon recognition by cognate tRNA results in the hydrolysis of GTP by EF-Tu over 75 Å away. The ribosome recognizes the geometry of codon-anticodon base pairing at the first two positions but monitors the third, or wobble position, less stringently. Part of the additional binding energy of cognate tRNA is used to induce conformational changes in the ribosome that stabilize a transition state for GTP hydrolysis by EF-Tu and subsequently result in accelerated accommodation of tRNA into the peptidyl transferase center. The transition state for GTP hydrolysis is characterized, among other things, by a distorted tRNA. This picture explains a large body of data on the effect of antibiotics and mutations on translational fidelity. However, many fundamental questions remain, such as the mechanism of activation of GTP hydrolysis by EF-Tu, and the relationship between decoding and frameshifting.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kunkel TA, Bebenek K. 2000. Annu. Rev. Biochem. 69:497–529 [Google Scholar]
  2. Rosenberger RF, Foskett G. 1981. Mol. Gen. Genet. 183:561–63 [Google Scholar]
  3. Rosenberger RF, Hilton J. 1983. Mol. Gen. Genet. 191:207–12 [Google Scholar]
  4. Kurland CG, Hughes D, Ehrenberg M. 1996. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology ed. FC Neidhardt, R Curtiss III, JL Ingraham, ECC Lin, KB Low, B Magasanik pp. 979–1004 Washington, DC: Am. Soc. Microbiol. Press [Google Scholar]
  5. Fersht AR. 1998. Structure and Mechanism in Protein Science New York: Freeman [Google Scholar]
  6. Fersht AR. 1977. Biochemistry 16:1025–30 [Google Scholar]
  7. Nureki O, Vassylyev DG, Tateno M, Shimada A, Nakama T. et al. 1998. Science 280:578–82 [Google Scholar]
  8. Dock-Bregeon A, Sankaranarayanan R, Romby P, Caillet J, Springer M. et al. 2000. Cell 103:877–84 [Google Scholar]
  9. Fersht AR, Dingwall C. 1979. Biochemistry 18:2627–31 [Google Scholar]
  10. Freist W, Pardowitz I, Cramer F. 1985. Biochemistry 24:7014–23 [Google Scholar]
  11. Bouadloun F, Donner D, Kurland CG. 1983. EMBO J. 2:1351–56 [Google Scholar]
  12. Watson JD, Crick FHC. 1953. Nature 171:964–67 [Google Scholar]
  13. Crick FHC. 1957. Symp. Biochem. Soc. 14:25–26 [Google Scholar]
  14. Crick FHC, Griffith JS, Orgel LE. 1957. Proc. Natl. Acad. Sci. USA 43:416–21 [Google Scholar]
  15. Hoagland MB, Stephenson ML, Scott HF, Hecht LI, Zamecnik PC. 1958. J. Biol. Chem. 231:241–57 [Google Scholar]
  16. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M. et al. 1965. Science 147:1462–65 [Google Scholar]
  17. Pauling L. 1958. In Arbeiten aus dem Gebiet der Naturstoffe (Festschr. Prof. Dr. Arthur Stoll Siebzigsten Geburtstag, 8 Jan. 1957) pp. 597–602 Basel: Birkhäuser [Google Scholar]
  18. Loftfield RB. 1963. Biochem. J. 89:82–92 [Google Scholar]
  19. Loftfield RB, Vanderjagt D. 1972. Biochem. J. 128:1353–56 [Google Scholar]
  20. Edelmann P, Gallant J. 1977. Cell 10:131–37 [Google Scholar]
  21. Parker J, Flanagan J, Murphy J, Gallant J. 1981. Mech. Ageing Dev. 16:127–39 [Google Scholar]
  22. Davies J, Gilbert W, Gorini L. 1964. Proc. Natl. Acad. Sci. USA 51:883–90 [Google Scholar]
  23. Szer W, Ochoa S. 1964. J. Mol. Biol. 12:823–34 [Google Scholar]
  24. Weinstein IB, Friedman SM, Ochoa M Jr. 1966. Cold Spring Harbor Symp. Quant. Biol. 31:671–81 [Google Scholar]
  25. Jelenc PC, Kurland CG. 1979. Proc. Natl. Acad. Sci. USA 76:3174–78 [Google Scholar]
  26. Jaskunas SR, Cantor CR, Tinoco I Jr. 1968. Biochemistry 7:3164–78 [Google Scholar]
  27. Uhlenbeck OC, Baller J, Doty P. 1970. Nature 225:508–10 [Google Scholar]
  28. Eisinger J, Feuer B, Yamane T. 1970. Proc. Natl. Acad. Sci. USA 65:638–44 [Google Scholar]
  29. Eisinger J, Feuer B, Yamane T. 1971. Nat. New Biol. 231:126–28 [Google Scholar]
  30. Pongs O, Bald R, Reinwald E. 1973. Eur. J. Biochem. 32:117–25 [Google Scholar]
  31. Eisinger J. 1971. Biochem. Biophys. Res. Commun. 43:854–61 [Google Scholar]
  32. Grosjean H, Söll DG, Crothers DM. 1976. J. Mol. Biol. 103:499–519 [Google Scholar]
  33. Moras D, Dock AC, Dumas P, Westhof E, Romby P. et al. 1985. J. Biomol. Struct. Dyn. 3:479–93 [Google Scholar]
  34. Grosjean HJ, de Henau S, Crothers DM. 1978. Proc. Natl. Acad. Sci. USA 75:610–14 [Google Scholar]
  35. Thompson RC, Stone PJ. 1977. Proc. Natl. Acad. Sci. USA 74:198–202 [Google Scholar]
  36. Rodnina MV, Wintermeyer W. 2001. Annu. Rev. Biochem. 70:415–35 [Google Scholar]
  37. Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ. et al. 1998. Biochemistry 37:14719–35 [Google Scholar]
  38. Kierzek R, Burkard ME, Turner DH. 1999. Biochemistry 38:14214–23 [Google Scholar]
  39. Mathews DH, Sabina J, Zuker M, Turner DH. 1999. J. Mol. Biol. 288:911–40 [Google Scholar]
  40. Freier SM, Sugimoto N, Sinclair A, Alkema D, Neilson T. et al. 1986. Biochemistry 25:3214–19 [Google Scholar]
  41. Fersht AR. 1987. Trends Biochem. Sci. 12:301–4 [Google Scholar]
  42. Pyle AM, Murphy FL, Cech TR. 1992. Nature 358:123–28 [Google Scholar]
  43. Pyle AM, Cech TR. 1991. Nature 350:628–31 [Google Scholar]
  44. Pyle AM, McSwiggen JA, Cech TR. 1990. Proc. Natl. Acad. Sci. USA 87:8187–91 [Google Scholar]
  45. Bevilacqua PC, Turner DH. 1991. Biochemistry 30:10632–40 [Google Scholar]
  46. SantaLucia J Jr, Kierzek R, Turner DH. 1992. Science 256:217–19 [Google Scholar]
  47. Freier SM, Kierzek R, Caruthers MH, Neilson T, Turner DH. 1986. Biochemistry 25:3209–13 [Google Scholar]
  48. Sugimoto N, Kierzek R, Turner DH. 1987. Biochemistry 26:4559–62 [Google Scholar]
  49. Sugimoto N, Kierzek R, Freier SM, Turner DH. 1986. Biochemistry 25:5755–59 [Google Scholar]
  50. Lipsett MN, Heppel LA, Bradley DF. 1960. Biochim. Biophys. Acta 41:175–77 [Google Scholar]
  51. Lipsett MN, Heppel LA, Bradley DF. 1961. J. Biol. Chem. 236:857–63 [Google Scholar]
  52. Lipsett MN. 1964. J. Biol. Chem. 239:1256–60 [Google Scholar]
  53. McLaughlin CS, Dondon J, Grunberg-Manago M, Michelson AM, Saunders G. 1966. Cold Spring Harbor Symp. Quant. Biol. 31:601–10 [Google Scholar]
  54. Crick FHC. 1963. Prog. Nucleic Acid Res. Mol. Biol. 1:164–217 [Google Scholar]
  55. Gorini L, Kataja E. 1964. Proc. Natl. Acad. Sci. USA 51:487–93 [Google Scholar]
  56. Gorini L, Jacoby GA, Breckenridge L. 1966. Cold Spring Harbor Symp. Quant. Biol. 31:657–64 [Google Scholar]
  57. Gorini L. 1974. In Ribosomes ed. M Nomura, A Tissiéres, P Lengyel pp. 791–803 Cold Spring Harbor, NY: Cold Spring Harbor Lab. [Google Scholar]
  58. Ozaki M, Mizushima S, Nomura M. 1969. Nature 222:333–39 [Google Scholar]
  59. Chakrabarti S, Gorini L. 1975. J. Bacteriol. 121:670–74 [Google Scholar]
  60. Kurland CG, Ehrenberg M. 1984. Prog. Nucleic Acid Res. Mol. Biol. 31:191–219 [Google Scholar]
  61. Gorini L, Rosset R, Zimmermann RA. 1967. Science 157:1314–17 [Google Scholar]
  62. Brownstein BL, Lewandowski LJ. 1967. J. Mol. Biol. 25:99–109 [Google Scholar]
  63. Rosset R, Gorini L. 1969. J. Mol. Biol. 39:95–112 [Google Scholar]
  64. Bjare U, Gorini L. 1971. J. Mol. Biol. 57:423–35 [Google Scholar]
  65. Zimmermann RA, Garvin RT, Gorini L. 1971. Proc. Natl. Acad. Sci. USA 68:2263–67 [Google Scholar]
  66. Hasenbank R, Guthrie C, Stoffler G, Wittmann HG, Rosen L, Apirion D. 1973. Mol. Gen. Genet. 127:1–18 [Google Scholar]
  67. Piepersberg W, Bock A, Wittmann HG. 1975. Mol. Gen. Genet. 140:91–100 [Google Scholar]
  68. Biswas DK, Gorini L. 1972. J. Mol. Biol. 64:119–34 [Google Scholar]
  69. Hirsh D. 1971. J. Mol. Biol. 58:439–58 [Google Scholar]
  70. Hirsh D, Gold L. 1971. J. Mol. Biol. 58:459–68 [Google Scholar]
  71. Buckingham RH, Kurland CG. 1977. Proc. Natl. Acad. Sci. USA 74:5496–98 [Google Scholar]
  72. Gorini L. 1971. Nat. New Biol. 234:261–64 [Google Scholar]
  73. Kirsebom LA, Isaksson LA. 1985. Proc. Natl. Acad. Sci. USA 82:717–21 [Google Scholar]
  74. Kirsebom LA, Amons R, Isaksson LA. 1986. Eur. J. Biochem. 156:669–75 [Google Scholar]
  75. Eigen M, de Maeyer L. 1966. Naturwissenschaften 53:50–57 [Google Scholar]
  76. Potapov AP. 1982. FEBS Lett. 146:5–8 [Google Scholar]
  77. Ninio J. 1974. J. Mol. Biol. 84:297–313 [Google Scholar]
  78. Hopfield JJ. 1974. Proc. Natl. Acad. Sci. USA 71:4135–39 [Google Scholar]
  79. Ninio J. 1975. Biochimie 57:587–95 [Google Scholar]
  80. Blomberg C, Ehrenberg M, Kurland CG. 1980. Q. Rev. Biophys. 13:231–54 [Google Scholar]
  81. Ruusala T, Ehrenberg M, Kurland CG. 1982. EMBO J. 1:741–45 [Google Scholar]
  82. Thompson RC, Dix DB, Gerson RB, Karim AM. 1981. J. Biol. Chem. 256:6676–81 [Google Scholar]
  83. Ruusala T, Kurland CG. 1984. Mol. Gen. Genet. 198:100–4 [Google Scholar]
  84. Thompson RC. 1988. Trends Biochem. Sci. 13:91–93 [Google Scholar]
  85. Thompson RC, Karim AM. 1982. Proc. Natl. Acad. Sci. USA 79:4922–26 [Google Scholar]
  86. Czworkowski J, Moore PB. 1996. Prog. Nucleic Acid Res. Mol. Biol. 54:293–332 [Google Scholar]
  87. Hausner TP, Geigenmuller U, Nierhaus KH. 1988. J. Biol. Chem. 263:13103–11 [Google Scholar]
  88. Geigenmuller U, Nierhaus KH. 1990. EMBO J. 9:4527–33 [Google Scholar]
  89. Rodnina MV, Fricke R, Wintermeyer W. 1994. Biochemistry 33:12267–75 [Google Scholar]
  90. Rodnina MV, Fricke R, Kuhn L, Wintermeyer W. 1995. EMBO J. 14:2613–19 [Google Scholar]
  91. Pape T, Wintermeyer W, Rodnina MV. 1998. EMBO J. 17:7490–97 [Google Scholar]
  92. Pape T, Wintermeyer W, Rodnina MV. 1999. EMBO J. 18:3800–7 [Google Scholar]
  93. Vorstenbosch E, Pape T, Rodnina MV, Kraal B, Wintermeyer W. 1996. EMBO J. 15:6766–74 [Google Scholar]
  94. Kjeldgaard M, Nyborg J. 1992. J. Mol. Biol. 223:721–42 [Google Scholar]
  95. Berchtold H, Reshetnikova L, Reiser CO, Schirmer NK, Sprinzl M, Hilgenfeld R. 1993. Nature 365:126–32 [Google Scholar]
  96. Kjeldgaard M, Nissen P, Thirup S, Nyborg J. 1993. Structure 1:35–50 [Google Scholar]
  97. Gromadski KB, Rodnina MV. 2004. Mol. Cell 13:191–200 [Google Scholar]
  98. Noller HF, Chaires JB. 1972. Proc. Natl. Acad. Sci. USA 69:3115–18 [Google Scholar]
  99. Moazed D, Noller HF. 1990. J. Mol. Biol. 211:135–45 [Google Scholar]
  100. Powers T, Noller HF. 1990. Proc. Natl. Acad. Sci. USA 87:1042–46 [Google Scholar]
  101. Yoshizawa S, Fourmy D, Puglisi JD. 1999. Science 285:1722–25 [Google Scholar]
  102. Moazed D, Noller HF. 1987. Nature 327:389–94 [Google Scholar]
  103. Purohit P, Stern S. 1994. Nature 370:659–62 [Google Scholar]
  104. Fourmy D, Recht MI, Blanchard SC, Puglisi JD. 1996. Science 274:1367–71 [Google Scholar]
  105. Fourmy D, Yoshizawa S, Puglisi JD. 1998. J. Mol. Biol. 277:333–45 [Google Scholar]
  106. van Loock MS, Easterwood TR, Harvey SC. 1999. J. Mol. Biol. 285:2069–78 [Google Scholar]
  107. Pape T, Wintermeyer W, Rodnina MV. 2000. Nat. Struct. Biol. 7:104–7 [Google Scholar]
  108. Yonath A, Mussig J, Tesche B, Lorenz S, Erdmann VA, Wittmann HG. 1980. Biochem. Int. 1:428–35 [Google Scholar]
  109. Trakhanov SD, Yusupov MM, Agalarov SC, Garber MB, Ryazantsev SN. et al. 1987. FEBS Lett. 220:319–22 [Google Scholar]
  110. Glotz C, Müssig J, Gewitz HS, Makowski I, Arad T. et al. 1987. Biochem. Int. 15:953–60 [Google Scholar]
  111. Yonath A, Glotz C, Gewitz HS, Bartels KS, von Böhlen K. et al. 1988. J. Mol. Biol. 203:831–34 [Google Scholar]
  112. von Böhlen K, Makowski I, Hansen HAS, Bartels H, Berkovitch-Yellin Z. et al. 1991. J. Mol. Biol. 222:11–15 [Google Scholar]
  113. Yonath A, Harms J, Hansen HA, Bashan A, Schlunzen F. et al. 1998. Acta Crystallogr. A 54:945–55 [Google Scholar]
  114. Clemons WM J Jr, May JL, Wimberly BT, McCutcheon JP, Capel MS, Ramakrishnan V. 1999. Nature 400:833–40 [Google Scholar]
  115. Cate JH, Yusupov MM, Yusupova GZ, Earnest TN, Noller HF. 1999. Science 285:2095–104 [Google Scholar]
  116. Ban N, Freeborn B, Nissen P, Penczek P, Grassucci RA. et al. 1998. Cell 93:1105–15 [Google Scholar]
  117. Ban N, Nissen P, Hansen J, Capel M, Moore PB, Steitz TA. 1999. Nature 400:841–47 [Google Scholar]
  118. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP. et al. 2000. Nature 407:327–39 [Google Scholar]
  119. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. Science 289:905–20 [Google Scholar]
  120. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M. et al. 2000. Cell 102:615–23 [Google Scholar]
  121. Brodersen DE, Clemons WM Jr, Carter AP, Wimberly BT, Ramakrishnan V. 2002. J. Mol. Biol. 316:725–68 [Google Scholar]
  122. Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M. et al. 2001. EMBO J. 20:1829–39 [Google Scholar]
  123. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN. et al. 2001. Science 292:883–96 [Google Scholar]
  124. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 2000. Nature 407:340–48 [Google Scholar]
  125. Vicens Q, Westhof E. 2001. Structure 9:647–58 [Google Scholar]
  126. Lynch SR, Gonzalez RL, Puglisi JD. 2003. Structure 11:43–53 [Google Scholar]
  127. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T. et al. 2001. Science 291:498–501 [Google Scholar]
  128. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. 2001. Science 292:897–902 [Google Scholar]
  129. Doherty EA, Batey RT, Masquida B, Doudna JA. 2001. Nat. Struct. Biol. 8:339–43 [Google Scholar]
  130. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. 2001. Proc. Natl. Acad. Sci. USA 98:4899–903 [Google Scholar]
  131. Battle DJ, Doudna JA. 2002. Proc. Natl. Acad. Sci. USA 99:11676–81 [Google Scholar]
  132. Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V. 2002. Cell 111:721–32 [Google Scholar]
  133. Tronrud DE, Holden HM, Matthews BW. 1987. Science 235:571–74 [Google Scholar]
  134. Bartlett PA, Marlowe CK. 1987. Science 235:569–71 [Google Scholar]
  135. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R. et al. 2000. Q. Rev. Biophys. 33:307–69 [Google Scholar]
  136. Frank J. 2002. Annu. Rev. Biophys. Biomol. Struct. 31:303–19 [Google Scholar]
  137. Douglass J, Blumenthal T. 1979. J. Biol. Chem. 254:5383–87 [Google Scholar]
  138. Vogeley L, Palm GJ, Mesters JR, Hilgenfeld R. 2001. J. Biol. Chem. 276:17149–55 [Google Scholar]
  139. Simonson AB, Lake JA. 2002. Nature 416:281–85 [Google Scholar]
  140. Stark H, Rodnina MV, Rinke-Appel J, Brimacombe R, Wintermeyer W, van Heel M. 1997. Nature 389:403–6 [Google Scholar]
  141. Moazed D, Noller HF. 1989. Nature 342:142–48 [Google Scholar]
  142. Powers T, Noller HF. 1994. J. Mol. Biol. 235:156–72 [Google Scholar]
  143. Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N. et al. 2002. EMBO J. 21:3557–67 [Google Scholar]
  144. Stark H, Rodnina MV, Wieden HJ, Zemlin F, Wintermeyer W, van Heel M. 2002. Nat. Struct. Biol. 9:849–54 [Google Scholar]
  145. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L. et al. 1995. Science 270:1464–72 [Google Scholar]
  146. Valle M, Zavialov A, Li W, Stagg SM, Sengupta J. et al. 2003. Nat. Struct. Biol. 10:899–906 [Google Scholar]
  147. Ogle JM, Carter AP, Ramakrishnan V. 2003. Trends Biochem. Sci. 28:259–66 [Google Scholar]
  148. Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W. 1996. J. Biol. Chem. 271:646–52 [Google Scholar]
  149. Vila-Sanjurjo A, Ridgeway WK, Seymaner V, Zhang W, Santoso S. et al. 2003. Proc. Natl. Acad. Sci. USA 100:8682–87 [Google Scholar]
  150. Gavrilova LP, Kostiashkina OE, Koteliansky VE, Rutkevitch NM, Spirin AS. 1976. J. Mol. Biol. 101:537–52 [Google Scholar]
  151. Woese C. 1970. Nature 226:817–20 [Google Scholar]
  152. Stagg SM, Valle M, Agrawal RK, Frank J, Harvey SC. 2002. RNA 8:1093–94 [Google Scholar]
  153. Yates JL. 1979. J. Biol. Chem. 254:11550–54 [Google Scholar]
  154. Bilgin N, Claesens F, Pahverk H, Ehrenberg M. 1992. J. Mol. Biol. 224:1011–27 [Google Scholar]
  155. Rodnina MV, Daviter T, Gromadski K, Wintermeyer W. 2002. Biochimie 84:745–54 [Google Scholar]
  156. Gromadski KB, Rodnina MV. 2004. Nat. Struct. Mol. Biol. 11:316–22 [Google Scholar]
  157. Kurland CG, Rigler R, Ehrenberg M, Blomberg C. 1975. Proc. Natl. Acad. Sci. USA 72:4248–51 [Google Scholar]
  158. Yarus M, Smith D. 1995. In tRNA: Structure, Biosynthesis and Function ed. D Söll, U RajBhandary pp. 443–68 Washington, DC: Am. Soc. Microbiol. Press [Google Scholar]
  159. Favre A, Buckingham R, Thomas G. 1975. Nucleic Acids Res. 2:1421–31 [Google Scholar]
  160. Vacher J, Buckingham RH. 1979. J. Mol. Biol. 129:287–94 [Google Scholar]
  161. Smith D, Yarus M. 1989. J. Mol. Biol. 206:489–501 [Google Scholar]
  162. Smith D, Yarus M. 1989. J. Mol. Biol. 206:503–11 [Google Scholar]
  163. Schultz DW, Yarus M. 1994. J. Mol. Biol. 235:1395–405 [Google Scholar]
  164. Schultz DW, Yarus M. 1994. J. Mol. Biol. 235:1381–94 [Google Scholar]
  165. Yarus M, Valle M, Frank J. 2003. RNA 9:384–85 [Google Scholar]
  166. Piepenburg O, Pape T, Pleiss JA, Wintermeyer W, Uhlenbeck OC, Rodnina MV. 2000. Biochemistry 39:1734–38 [Google Scholar]
  167. Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS. et al. 1974. Nature 250:546–51 [Google Scholar]
  168. Hilgenfeld R, Mesters J, Hogg T. 2000. In The Ribosome: Structure, Function, Antibiotics and Cellular Interactions ed. RA Garrett, SR Douthwaite, A Liljas, AT Matheson, PB Moore, HF Noller pp. 347–57 Washington, DC: Am. Soc. Microbiol. Press [Google Scholar]
  169. Krab IM, Parmeggiani A. 2002. Prog. Nucleic Acid Res. Mol. Biol. 71:513–51 [Google Scholar]
  170. Alexander C, Bilgin N, Lindschau C, Mesters JR, Kraal B. et al. 1995. J. Biol. Chem. 270:14541–47 [Google Scholar]
  171. Tapprich WE, Dahlberg AE. 1990. EMBO J. 9:2649–55 [Google Scholar]
  172. Bilgin N, Ehrenberg M. 1994. J. Mol. Biol. 235:813–24 [Google Scholar]
  173. Tapio S, Isaksson LA. 1991. Eur. J. Biochem. 202:981–84 [Google Scholar]
  174. Kothe U, Wieden HJ, Mohr D, Rodnina MV. 2004. J. Mol. Biol. 336:1011–21 [Google Scholar]
  175. McCarthy BJ, Holland JJ. 1965. Proc. Natl. Acad. Sci. USA 54:880–86 [Google Scholar]
  176. Potapov AP, Triana-Alonso FJ, Nierhaus KH. 1995. J. Biol. Chem. 270:17680–84 [Google Scholar]
  177. Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 2000. Cell 103:1143–54 [Google Scholar]
  178. Rheinberger HJ, Nierhaus KH. 1986. J. Biol. Chem. 261:9133–39 [Google Scholar]
  179. Lodmell JS, Dahlberg AE. 1997. Science 277:1262–67 [Google Scholar]
  180. Lodmell JS, Gutell RR, Dahlberg AE. 1995. Proc. Natl. Acad. Sci. USA 92:10555–59 [Google Scholar]
  181. Velichutina IV, Dresios J, Hong JY, Li C, Mankin A. et al. 2000. RNA 6:1174–84 [Google Scholar]
  182. Carter AP. 2002. Structural studies of the 30S ribosomal subunit PhD thesis. Univ. Cambridge Cambridge, UK: [Google Scholar]
  183. Rodriguez-Correa D, Dahlberg AE. 2004. RNA 10:28–33 [Google Scholar]
  184. Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S. 1998. Nucleic Acids Res. 26:148–53 [Google Scholar]
  185. Agris PF. 2004. Nucleic Acids Res. 32:223–38 [Google Scholar]
  186. Yarian C, Marszalek M, Sochacka E, Malkiewicz A, Guenther R. et al. 2000. Biochemistry 39:13390–95 [Google Scholar]
  187. Yarian C, Townsend H, Czestkowski W, Sochacka E, Malkiewicz AJ. et al. 2002. J. Biol. Chem. 277:16391–95 [Google Scholar]
  188. Konevega AL, Soboleva NG, Makhno VI, Semenkov YP, Wintermeyer W. et al. 2004. RNA 10:90–101 [Google Scholar]
  189. Murphy FV, Ramakrishnan V, Malkiewicz A, Agris PF. 2004. Nat. Struct. Mol. Biol. 11:1186–91 [Google Scholar]
  190. Atkins JF, Elseviers D, Gorini L. 1972. Proc. Natl. Acad. Sci. USA 69:1192–95 [Google Scholar]
  191. Riddle DL, Carbon J. 1973. Nat. New Biol. 242:230–34 [Google Scholar]
  192. Roth JR. 1981. Cell 24:601–2 [Google Scholar]
  193. Stahl G, McCarty GP, Farabaugh PJ. 2002. Trends Biochem. Sci. 27:178–83 [Google Scholar]
  194. Hansen TM, Baranov PV, Ivanov IP, Gesteland RF, Atkins JF. 2003. EMBO Rep. 4:499–504 [Google Scholar]
  195. Marquez V, Wilson DN, Tate WP, Triana-Alonso F, Nierhaus KH. 2004. Cell 118:45–55 [Google Scholar]
  196. Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T. 1998. Nature 391:251–58 [Google Scholar]
  197. Cheetham GM, Steitz TA. 1999. Science 286:2305–9 [Google Scholar]
  198. Johnson SJ, Beese LS. 2004. Cell 116:803–16 [Google Scholar]
  199. Ling H, Boudsocq F, Woodgate R, Yang W. 2001. Cell 107:91–102 [Google Scholar]
  200. Morales JC, Kool ET. 1998. Nat. Struct. Biol. 5:950–54 [Google Scholar]
  201. Kool ET. 2002. Annu. Rev. Biochem. 71:191–219 [Google Scholar]
  202. Steitz TA. 1999. J. Biol. Chem. 274:17395–98 [Google Scholar]
  203. Doublie S, Sawaya MR, Ellenberger T. 1999. Struct. Fold Des. 7:R31–35 [Google Scholar]
  204. Beard WA, Wilson SH. 2003. Structure 11:489–96 [Google Scholar]
  205. Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD. 2004. Nat. Struct. Mol. Biol. 11:1008–14 [Google Scholar]
  206. Sanbonmatsu KY, Joseph S. 2003. J. Mol. Biol. 328:33–47 [Google Scholar]
  207. LaRiviere FJ, Wolfson AD, Uhlenbeck OC. 2001. Science 294:165–68 [Google Scholar]
  208. Watson JD, Crick FHC. 1953. Nature 171:737–38 [Google Scholar]
  209. Seeman NC, Rosenberg JM, Rich A. 1976. Proc. Natl. Acad. Sci. USA 73:804–8 [Google Scholar]
  210. Nissen P, Kjeldgaard M, Thirup S, Clark BF, Nyborg J. 1996. Biochimie 78:921–33 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error