1932

Abstract

▪ Abstract 

Antibiotics target ribosomes at distinct locations within functionally relevant sites. They exert their inhibitory action by diverse modes, including competing with substrate binding, interfering with ribosomal dynamics, minimizing ribosomal mobility, facilitating miscoding, hampering the progression of the mRNA chain, and blocking the nascent protein exit tunnel. Although the ribosomes are highly conserved organelles, they possess subtle sequence and/or conformational variations. These enable drug selectivity, thus facilitating clinical usage. The structural implications of these differences were deciphered by comparisons of high-resolution structures of complexes of antibiotics with ribosomal particles from eubacteria resembling pathogens and from an archaeon that shares properties with eukaryotes. The various antibiotic-binding modes detected in these structures demonstrate that members of antibiotic families possessing common chemical elements with minute differences might bind to ribosomal pockets in significantly different modes, governed by their chemical properties. Similarly, the nature of seemingly identical mechanisms of drug resistance is dominated, directly or via cellular effects, by the antibiotics' chemical properties. The observed variability in antibiotic binding and inhibitory modes justifies expectations for structurally based improved properties of existing compounds as well as for the discovery of novel drug classes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.74.082803.133130
2005-07-07
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bi/74/1/annurev.biochem.74.082803.133130.html?itemId=/content/journals/10.1146/annurev.biochem.74.082803.133130&mimeType=html&fmt=ahah

Literature Cited

  1. Sigmund CD, Ettayebi M, Morgan EA. 1984. Nucleic Acids Res. 12:4653–63 [Google Scholar]
  2. Courvalin P, Ounissi H, Arthur M. 1985. J. Antimicrob. Chemother. 16:91–100 [Google Scholar]
  3. Weisblum B. 1995. Antimicrob. Agents Chemother. 39:577–85 [Google Scholar]
  4. Vazquez D. 1979. Mol. Biol. Biochem. Biophys. 30:1–312 [Google Scholar]
  5. Cundliffe E. 1981. In The Molecular Basis of Antibiotic Action ed. EF Gale, E Cundliffe, PE Reynolds, MH Richmond, MJ Waring MJ pp. 419–39 London: Wiley [Google Scholar]
  6. Cundliffe E. 1981. See Ref. 5 pp. 402–547
  7. Spahn CM, Prescott CD. 1996. J. Mol. Med. 74:423–39 [Google Scholar]
  8. Yonath A, Bashan A. 2004. Annu. Rev. Microbiol. 58:233–51 [Google Scholar]
  9. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M. et al. 2000. Cell 102:615–23 [Google Scholar]
  10. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP. et al. 2000. Nature 407:327–39 [Google Scholar]
  11. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. Science 289:905–20 [Google Scholar]
  12. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN. et al. 2001. Science 292:883–96 [Google Scholar]
  13. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S. et al. 2001. Cell 107:679–88 [Google Scholar]
  14. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 2000. Nature 407:340–48 [Google Scholar]
  15. Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 2000. Cell 103:1143–54 [Google Scholar]
  16. Pioletti M, Schluenzen F, Harms J, Zarivach R, Gluehmann M. et al. 2001. EMBO J. 20:1829–39 [Google Scholar]
  17. Schluenzen F, Zarivach R, Harms J, Bashan A, Tocilj A. et al. 2001. Nature 413:814–21 [Google Scholar]
  18. Schluenzen F, Harms JM, Franceschi F, Hansen HA, Bartels H. et al. 2003. Structure 11:329–38 [Google Scholar]
  19. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. 2002. Mol. Cell 10:117–28 [Google Scholar]
  20. Hansen JL, Moore PB, Steitz TA. 2003. J. Mol. Biol. 330:1061–75 [Google Scholar]
  21. Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T. et al. 2003. Nat. Struct. Biol. 10:366–70 [Google Scholar]
  22. Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen HA. et al. 2003. J. Bacteriol. 185:4276–79 [Google Scholar]
  23. Harms J, Schluenzen F, Fucini P, Bartels H, Yonath A. 2004. BMC Biol. 2:1741–47 [Google Scholar]
  24. Schluenzen F, Pyetan E, Yonath A, Harms J. 2004. Mol. Microbiol. 54:1287–94 [Google Scholar]
  25. Auerbach T, Bashan A, Harms J, Schluenzen F, Zarivach R. et al. 2002. Curr. Drug Targets—Infect. Disord. 2:169–86 [Google Scholar]
  26. Knowles DJ, Foloppe N, Matassova NB, Murchie AI. 2002. Curr. Opin. Pharmacol. 2:501–6 [Google Scholar]
  27. Gaynor M, Mankin AS. 2003. Curr. Top Med. Chem. 3:949–61 [Google Scholar]
  28. Poehlsgaard J, Douthwaite S. 2003. Curr. Opin. Investig. Drugs 4:140–48 [Google Scholar]
  29. Auerbach T, Bashan A, Yonath A. 2004. Trends Biotechnol. 22:570–76 [Google Scholar]
  30. Pfister P, Jenni S, Poehlsgaard J, Thomas A, Douthwaite S. et al. 2004. J. Mol. Biol. 342:1569–81 [Google Scholar]
  31. Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J. et al. 2003. Mol. Cell 11:91–102 [Google Scholar]
  32. Agmon I, Amit M, Auerbach T, Bashan A, Baram D. et al. 2004. FEBS Lett. 567:20–26 [Google Scholar]
  33. Yonath A. 2002. Annu. Rev. Biophys. Biomol. Struct. 31:257–73 [Google Scholar]
  34. Lodmell JS, Dahlberg AE. 1997. Science 277:1262–67 [Google Scholar]
  35. Fourmy D, Recht MI, Blanchard SC, Puglisi JD. 1996. Science 274:1367–71 [Google Scholar]
  36. Vicens Q, Westhof E. 2001. Structure 9:647–58 [Google Scholar]
  37. Lynch SR, Gonzalez RL, Puglisi JD. 2003. Structure 11:43–53 [Google Scholar]
  38. Fourmy D, Recht MI, Puglisi JD. 1998. J. Mol. Biol. 277:347–62 [Google Scholar]
  39. Bashan A, Zarivach R, Schluenzen F, Agmon I, Harms J. et al. 2003. Biopolymers 70:19–41 [Google Scholar]
  40. Agmon I, Auerbach T, Baram D, Bartels H, Bashan A. et al. 2003. Eur. J. Biochem. 270:2543–56 [Google Scholar]
  41. Zarivach R, Bashan A, Berisio R, Harms J, Auerbach T. et al. 2004. J. Phys. Org. Chem. 17:901–12 [Google Scholar]
  42. Baram D, Yonath A. 2005. FEBS Letters. 579:948–54 [Google Scholar]
  43. Mankin AS, Garrett RA. 1991. J. Bacteriol. 173:3559–63 [Google Scholar]
  44. Shaw WV, Leslie AG. 1991. Annu. Rev. Biophys. Biophys. Chem. 20:363–86 [Google Scholar]
  45. Izard T, Ellis J. 2000. EMBO J. 19:2690–700 [Google Scholar]
  46. Douthwaite S. 1992. Nucleic Acids Res. 20:4717–20 [Google Scholar]
  47. Kucers A, Bennett N, Kemp R. 1987. In The Use of Antibiotics ed. A Kucers, N Bennett, R Kemp pp. 819–50 Philadelphia: Heinemann [Google Scholar]
  48. Bacque E, Pautrat F, Zard SZ. 2002. Chem. Commun.2312–13 [Google Scholar]
  49. Springer DM, Sorenson ME, Huang S, Connolly TP, Bronson JJ. et al. 2003. Bioorg. Med. Chem. Lett. 13:1751–53 [Google Scholar]
  50. Kavanagh F, Hervey A, Robbins WJ. 1951. Proc. Natl. Acad. Sci. USA 37:570–74 [Google Scholar]
  51. Egger H, Reinshagen H. 1976. J. Antibiot. 29:923–27 [Google Scholar]
  52. Hogenauer G. 1975. Eur. J. Biochem. 52:93–98 [Google Scholar]
  53. Poulsen SM, Karlsson M, Johansson LB, Vester B. 2001. Mol. Microbiol. 41:1091–99 [Google Scholar]
  54. Pringle M, Poehlsgaard J, Vester B, Long KS. 2004. Mol. Microbiol. 54:1295–306 [Google Scholar]
  55. Hogenauer G, Egger H, Ruf C, Stumper B. 1981. Biochemistry 20:546–52 [Google Scholar]
  56. Milligan RA, Unwin PN. 1986. Nature 319:693–95 [Google Scholar]
  57. Yonath A, Leonard KR, Wittmann HG. 1987. Science 236:813–16 [Google Scholar]
  58. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. 2000. Science 289:920–30 [Google Scholar]
  59. Nakatogawa H, Ito K. 2002. Cell 108:629–36 [Google Scholar]
  60. Gong F, Yanofsky C. 2002. Science 297:1864–67 [Google Scholar]
  61. Woolhead CA, McCormick PJ, Johnson AE. 2004. Cell 116:725–36 [Google Scholar]
  62. Andersson S, Kurland CG. 1987. Biochimie 69:901–4 [Google Scholar]
  63. Contreras A, Vazquez D. 1977. Eur. J. Biochem. 74:539–47 [Google Scholar]
  64. Tai PC, Wallace BJ, Davis BD. 1974. Biochemistry 13:4653–59 [Google Scholar]
  65. Tenson T, Lovmar M, Ehrenberg M. 2003. J. Mol. Biol. 330:1005–14 [Google Scholar]
  66. Garza-Ramos G, Xiong L, Zhong P, Mankin A. 2001. J. Bacteriol. 183:6898–907 [Google Scholar]
  67. Tenson T, Ehrenberg M. 2002. Cell 108:591–94 [Google Scholar]
  68. Menninger JR, Otto DP. 1982. Antimicrob. Agents Chemother. 21:811–18 [Google Scholar]
  69. Otaka T, Kaji A. 1975. Proc. Natl. Acad. Sci. USA 72:2649–52 [Google Scholar]
  70. Douthwaite S, Hansen LH, Mauvais P. 2000. Mol. Microbiol. 36:183–93 [Google Scholar]
  71. Vester B, Douthwaite S. 2001. Antimicrob. Agents Chemother. 45:1–12 [Google Scholar]
  72. Blondeau JM, DeCarolis E, Metzler KL, Hansen GT. 2002. Expert Opin. Investig. Drugs 11:189–215 [Google Scholar]
  73. Le Noc P, Croize J, Bryskier A, Le Noc D, Robert J. 1989. Pathol. Biol. 37:553–59 [Google Scholar]
  74. Bryskier A, Butzler JP, Neu HC, Tulkens PM. eds. 1993. Macrolides-Chemistry, Pharmacology, and Clinical Uses Paris: Blackwell [Google Scholar]
  75. Poulsen SM, Kofoed C, Vester B. 2000. J. Mol. Biol. 304:471–81 [Google Scholar]
  76. Alvarez-Elcoro S, Enzler MJ. 1999. Mayo Clin. Proc. 74:613–34 [Google Scholar]
  77. Champney WS, Tober CL. 2000. Curr. Microbiol. 41:126–35 [Google Scholar]
  78. Bryskier A. 2001. Jpn. J. Antibiot. 54:64–69 [Google Scholar]
  79. Zhong P, Shortridge V. 2001. Curr. Drug Targets Infect. Disord. 1:125–31 [Google Scholar]
  80. Wu YJ, Su WG. 2001. Curr. Med. Chem. 8:1727–58 [Google Scholar]
  81. Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A. et al. 2002. Drugs 62:1771–804 [Google Scholar]
  82. Ackermann G, Rodloff AC. 2003. J. Antimicrob. Chemother. 51:497–511 [Google Scholar]
  83. Douthwaite S, Champney WS. 2001. J. Antimicrob. Chemother. 48:1–8 [Google Scholar]
  84. Xiong L, Shah S, Mauvais P, Mankin AS. 1999. Mol. Microbiol. 31:633–39 [Google Scholar]
  85. Hansen LH, Mauvais P, Douthwaite S. 1999. Mol. Microbiol. 31:623–31 [Google Scholar]
  86. Bingen E, Leclercq R, Fitoussi F, Brahimi N, Malbruny B. et al. 2002. Antimicrob. Agents Chemother. 46:1199–203 [Google Scholar]
  87. Vimberg V, Xiong L, Bailey M, Tenson T, Mankin A. 2004. Mol. Microbiol. 54:376–85 [Google Scholar]
  88. Tenson T, DeBlasio A, Mankin A. 1996. Proc. Natl. Acad. Sci. USA 93:5641–46 [Google Scholar]
  89. Tenson T, Mankin AS. 2001. Peptides 22:1661–68 [Google Scholar]
  90. Tripathi S, Kloss PS, Mankin AS. 1998. J. Biol. Chem. 273:20073–77 [Google Scholar]
  91. Mao JC, Robishaw EE. 1971. Biochemistry 10:2054–61 [Google Scholar]
  92. Porse BT, Garrett RA. 1999. J. Mol. Biol. 286:375–87 [Google Scholar]
  93. Porse BT, Kirillov SV, Awayez MJ, Ottenheijm HC, Garrett RA. 1999. Proc. Natl. Acad. Sci. USA 96:9003–8 [Google Scholar]
  94. Goldberg IH, Mitsugi K. 1966. Biochem. Biophys. Res. Commun. 23:453–59 [Google Scholar]
  95. Monro RE, Celma ML, Vazquez D. 1969. Nature 222:356–58 [Google Scholar]
  96. Zamir A, Miskin R, Vogel Z, Elson D. 1974. Methods Enzymol. 30:406–26 [Google Scholar]
  97. Bayfield MA, Dahlberg AE, Schulmeister U, Dorner S, Barta A. 2001. Proc. Natl. Acad. Sci. USA 98:10096–101 [Google Scholar]
  98. Moore PB, Steitz TA. 2003. RNA 9:155–59 [Google Scholar]
  99. Kaper JB, Nataro JP, Mobley HL. 2004. Nat. Rev. Microbiol. 2:123–40 [Google Scholar]
  100. Tan GT, DeBlasio A, Mankin AS. 1996. J. Mol. Biol. 261:222–30 [Google Scholar]
  101. Boettger EC, Springer B, Prammananan T, Kidan Y, Sander P. 2001. EMBO Rep. 2:318–23 [Google Scholar]
  102. Wittmann HG, Stoffler G, Apirion D, Rosen L, Tanaka K. et al. 1973. Mol. Gen. Genet. 127:175–89 [Google Scholar]
  103. Chittum HS, Champney WS. 1994. J. Bacteriol. 176:6192–98 [Google Scholar]
  104. Canu A, Abbas A, Malbruny B, Sichel F, Leclercq R. 2004. Antimicrob. Agents Chemother. 48:297–304 [Google Scholar]
  105. Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M. et al. 2001. Mol. Cell 8:181–88 [Google Scholar]
  106. Davydova N, Streltsov V, Wilce M, Liljas A, Garber M. 2002. J. Mol. Biol. 322:635–44 [Google Scholar]
  107. Gregory ST, Dahlberg AE. 1999. J. Mol. Biol. 289:827–34 [Google Scholar]
  108. Bozdogan B, Appelbaum PC, Kelly LM, Hoellman DB, Tambic-Andrasevic A. et al. 2003. Clin. Microbiol. Infect. 9:741–45 [Google Scholar]
  109. Pereyre S, Gonzalez P, De Barbeyrac B, Darnige A, Renaudin H. et al. 2002. Antimicrob. Agents Chemother. 46:3142–50 [Google Scholar]
  110. Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L. et al. 2003. N. Engl. J. Med. 349:1433–41 [Google Scholar]
/content/journals/10.1146/annurev.biochem.74.082803.133130
Loading
/content/journals/10.1146/annurev.biochem.74.082803.133130
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error