1932

Abstract

Abstract

The fundamental problems in duplicating and transmitting genetic information posed by the geometric and topological features of DNA, combined with its large size, are qualitatively similar for prokaryotic and eukaryotic chromosomes. The evolutionary solutions to these problems reveal common themes. However, depending on differences in their organization, ploidy, and copy number, chromosomes and plasmids display distinct segregation strategies as well. In bacteria, chromosome duplication, likely mediated by a stationary replication factory, is accompanied by rapid, directed migration of the daughter duplexes with assistance from DNA-compacting and perhaps translocating proteins. The segregation of unit-copy or low-copy bacterial plasmids is also regulated spatially and temporally by their respective partitioning systems. Eukaryotic chromosomes utilize variations of a basic pairing and unpairing mechanism for faithful segregation during mitosis and meiosis. Rather surprisingly, the yeast plasmid 2-micron circle also resorts to a similar scheme for equal partitioning during mitosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.75.101304.124037
2006-07-07
2024-04-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.biochem.75.101304.124037
Loading
/content/journals/10.1146/annurev.biochem.75.101304.124037
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error