Full text loading...
Abstract
The Lagrangian description of turbulence is characterized by a unique conceptual simplicity and by an immediate connection with the physics of dispersion and mixing. In this article, we report some motivations behind the Lagrangian description of turbulence and focus on the statistical properties of particles when advected by fully developed turbulent flows. By means of a detailed comparison between experimental and numerical results, we review the physics of particle acceleration, Lagrangian velocity structure functions, and pairs and shapes evolution. Recent results for nonideal particles are discussed, providing an outlook on future directions.