Large DNA viruses defend against hostile assault executed by the host immune system by producing an array of gene products that systematically sabotage key components of the inflammatory response. Poxviruses target many of the primary mediators of innate immunity including interferons, tumor necrosis factors, interleukins, complement, and chemokines. Poxviruses also manipulate a variety of intracellular signal transduction pathways such as the apoptotic response. Many of the poxvirus genes that disrupt these pathways have been hijacked directly from the host immune system, while others have demonstrated no clear resemblance to any known host genes. Nonetheless, the immunological targets and the diversity of strategies used by poxviruses to disrupt these host pathways have provided important insights into diverse aspects of immunology, virology, and inflammation. Furthermore, because of their anti-inflammatory nature, many of these poxvirus proteins hold promise as potential therapeutic agents for acute or chronic inflammatory conditions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alcamí A, Koszinowski UH. 2000. Viral mechanisms of immune evasion.. Immunol. Today 21:447–55 [Google Scholar]
  2. McFadden G, Murphy PM. 2000. Host-related immunomodulators encoded by poxviruses and herpesviruses.. Curr. Opin. Microbiol. 3:371–78 [Google Scholar]
  3. Nash P, Barrett J, Cao J-X, Hota-Mitchell S, Lalani AS. et al. 1999. Immunomodulation by viruses: the myxoma virus story.. Immunol. Rev. 168:103–20 [Google Scholar]
  4. Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL. 2000. Viral subversion of the immune system.. Annu. Rev. Immunol. 18:861–926 [Google Scholar]
  5. Moss B, Shisler JL. 2001. Immunology 101 at poxvirus U: immune evasion genes.. Semin. Immunol. 13:59–66 [Google Scholar]
  6. Smith GL. 2000. Secreted poxvirus proteins that interact with the immune system. In Effects of Microbes on the Immune System, ed. MW Cunningham, RS Fujinami 491–507 Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  7. Smith GL. 1999. Vaccinia virus immune evasion.. Immunol. Lett. 65:55–62 [Google Scholar]
  8. Barry M, McFadden G. 1997. Virus encoded cytokines and cytokine receptors.. Parasitology 115:S89–100 [Google Scholar]
  9. Barry M, McFadden G. 1997. Virokines and viroceptors. In Cytokines in Health and Disease, ed. DG Remick, JS Friedland 251–61 New York: Marcel Dekker [Google Scholar]
  10. Haig DM. 2001. Subversion and piracy: DNA viruses and immune evasion.. Res. Vet. Sci. 70:205–19 [Google Scholar]
  11. Moss B. 2001. Poxviridae: the viruses and their replication. In Fields Virology, ed. DM Knipe, PM Howley 22849–83 Philadelphia: Lippincott Williams & Wilkins. 4th ed [Google Scholar]
  12. Afonso CL, Tulman ER, Lu Z, Zsak L, Kutish GF. et al. 2000. The genome of fowlpox virus.. J. Virol. 74:3815–31 [Google Scholar]
  13. Shchelkunov SN, Massung RF, Esposito JJ. 1995. Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses.. Virus Res. 36:107–18 [Google Scholar]
  14. Willer D, McFadden G, Evans DH. 1999. The complete genome sequence of Shope (rabbit) fibroma virus.. Virology 264:319–43 [Google Scholar]
  15. Massung RF, Liu LI, Qi J, Knight JC, Yuran TE. et al. 1994. Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975.. Virology 201:215–40 [Google Scholar]
  16. Shchelkunov SN, Totmenin AV, Loparev VN, Safronov PF, Gutorov VV. et al. 2000. Alastrim smallpox variola minor virus genome DNA sequences.. Virology 266:361–86 [Google Scholar]
  17. Cameron C, Hota-Mitchell S, Chen L, Barrett J, Cao J-X. et al. 1999. The complete DNA sequence of myxoma virus.. Virology 264:298–318 [Google Scholar]
  18. Everett H, McFadden G. 2001. Viral proteins and the mitochondrial apoptotic checkpoint.. Cytokine Growth Factor Rev. 12:181–88 [Google Scholar]
  19. Guerin J-L, Gelfi J, Bouillier S, Delverdier M, Bellanger F-A. et al. 2002. Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins.. J. Virol. 76:2912–23 [Google Scholar]
  20. Afonso CL, Tulman ER, Lu Z, Zsak L, Osorio FA. et al. 2002. The genome of swinepox virus.. J. Virol. 76:783–90 [Google Scholar]
  21. Lee H-J, Essani K, Smith GL. 2001. The genome sequence of yaba-like disease virus, a yatapoxvirus.. Virology 281:170–92 [Google Scholar]
  22. Senkevich TG, Koonin EV, Bugert JJ, Darai G, Moss B. 1997. The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses.. Virology 233:19–42 [Google Scholar]
  23. Buller RLM, Palumbo GJ. 1991. Poxvirus pathogenesis.. Microbiol. Rev. 55:80–122 [Google Scholar]
  24. Barry M, Bleackley C. 2002. Cytotoxic T lymphocytes: all roads lead to death.. Nat. Rev. 2:401–9 [Google Scholar]
  25. McFadden G, Kane K. 1994. How DNA viruses perturb functional MHC expression to alter immune recognition. In Advances in Cancer Research, ed. GF Vandewoude, G Klein 63117–209 San Diego: Academic [Google Scholar]
  26. Boshkov LK, Macen JL, McFadden G. 1992. Virus-induced loss of class I major histocompatibility antigens from the surface of cells infected with myxoma virus and malignant rabbit fibroma virus.. J. Immunol. 148:881–87 [Google Scholar]
  27. Coscoy L, Ganem D. 2000. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis.. Proc. Natl. Acad. Sci. USA 97:8051–56 [Google Scholar]
  28. Ishido S, Choi JK, Lee BS, Wang C, DeMaria M. et al. 2000. Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein.. Immunity 13:365–74 [Google Scholar]
  29. Zuñiga MC, Hong W, Barry M, McFadden G. 1999. Endosomal/lysosomal retention and degradation of major histocompatibility complex class I molecules is induced by myxoma virus.. Virology 261:180–92 [Google Scholar]
  30. Senkevich TG, Bugert JJ, Sisler JR, Koonin EV, Darai G. et al. 1996. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes.. Science 273:813–16 [Google Scholar]
  31. Senkevich TG, Moss B. 1998. Domain structure, intracellular trafficking, and beta-2-microglobulin binding of a major histocompatibility complex class I homolog encoded by molluscum contagiosum virus.. Virology 250:397–407 [Google Scholar]
  32. Barry M, Lee SF, Boshkov L, McFadden G. 1995. Myxoma virus induces extensive CD4 downregulation and dissociation of p56lck in infected rabbit CD4+ T lymphocytes.. J. Virol. 69:5243–51 [Google Scholar]
  33. Muller-Eberhard HJ. 1988. Molecular organization and function of the complement system.. Annu. Rev. Biochem. 57:321–47 [Google Scholar]
  34. Lindahl G, Sjobring U, Johnsson E. 2000. Human complement regulators: a major target for pathogenic microorganisms.. Curr. Opin. Immunol. 12:44–51 [Google Scholar]
  35. Howard J, Justus DE, Totmenin AV, Shchelkunov S, Kotwal GJ. 1998. Molecular mimicry of the inflammation modulatory proteins (IMPs) of poxviruses: evasion of the inflammatory response to preserve viral habitat.. J. Leukoc. Biol. 64:68–71 [Google Scholar]
  36. Kotwal GJ, Moss B. 1988. Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins.. Nature 335:176–78 [Google Scholar]
  37. Kotwal GJ, Isaacs SN, McKenzie R, Frank MM. et al. 1990. Inhibition of the complement cascade by the major secretory protein of vaccinia virus.. Science 250:827–30 [Google Scholar]
  38. McKenzie R, Kotwal GJ, Moss B, Hammer CH, Frank MM. 1992. Regulation of complement activity by vaccinia virus complement-control protein.. J. Infect. Dis. 166:1245–50 [Google Scholar]
  39. Sahu A, Isaacs SN, Soulika AM, Lambris JD. 1998. Interaction of vaccinia virus complement control protein with human complement proteins—factor I-mediated degradation of C3b to Ic3b(1) inactivates the alternative complement pathway.. J. Immunol. 160:5596–604 [Google Scholar]
  40. Isaacs SN, Kotwal GJ, Moss B. 1992. Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence.. Proc. Natl. Acad. Sci. USA 89:628–32 [Google Scholar]
  41. Murthy KH, Smith SA, Ganesh VK, Judge KW, Mullin N. et al. 2001. Crystal structure of a complement control protein that regulates both pathways of complement activation and binds heparan sulfate proteoglycans.. Cell 104:301–11 [Google Scholar]
  42. Reynolds D, Keeling K, Molestina R, Srisatajluk R, Butterfield JHJ. et al. 1999. Heparin binding activity of vaccinia virus complement control protein confers additional properties of uptake by mast cells and attachment to endothelial cells. In Advances in Animal Virology, ed. S Jameel, L Villareal 337–43 New Delhi: Oxford/IBN [Google Scholar]
  43. Smith SA, Mullin NP, Parkinson J, Shchelkunov SN, Totmenin AV. et al. 2000. Conserved surface-exposed K/R-X-K/R motifs and net positive charge on poxvirus complement control proteins serve as putative heparin binding sites and contribute to inhibition of molecular interactions with human endothelial cells: a novel mechanism for evasion of host defense.. J. Virol. 74:5659–66 [Google Scholar]
  44. Henderson CE, Bromek K, Mullin NP, Smith BO, Uhrin D. et al. 2001. Solution structure and dynamics of the central CCP module pair of a poxvirus complement control protein.. J. Mol. Biol. 307:323–39 [Google Scholar]
  45. Johnson AA, Rosengard AM, Skjødt K, Ahearn JM, Leslie RGQ. 1999. The structural basis for complement receptor type 2 (CCR, CD21)-mediated alternative pathway activation of complement: studies with CR2 deletion mutants and vaccinia virus complement-control protein-CR2 chimeras.. Eur. J. Immunol. 29:3837–44 [Google Scholar]
  46. Kirkitadze MD, Henderson C, Price NC, Kelly SM, Mullin NP. et al. 1999. Central modules of the vaccinia virus complement control protein are not in extensive contact.. Biochem. J. 344:167–75 [Google Scholar]
  47. Rosengard AM, Alonso LC, Korb LC, Baldwin WM III, Sanfilippo F. et al. 1999. Functional characterization of soluble and membrane-bound forms of vaccinia virus complement control protein (VCP).. Mol. Immunol. 36:685–97 [Google Scholar]
  48. Al-Mohanna F, Parhar R, Kotwal GJ. 2001. Vaccinia virus complement control protein is capable of protecting xenoendothelial cells from antibody binding and killing by human complement and cytotoxic cells.. Transplantation 71:796–801 [Google Scholar]
  49. Anderson JB, Smith SA, Kotwal GJ. 2002. Vaccinia virus complement control protein inhibits hyperacute xenorejection.. Transplant. Proc. 34:1083–85 [Google Scholar]
  50. Uvarova EA, Shchelkunov SN. 2001. Species-specific differences in the structure of orthopoxvirus complement-binding protein.. Virus Res. 81:39–45 [Google Scholar]
  51. Miller CG, Shchelkunov SN, Kotwal GJ. 1997. The cowpox virus-encoded homolog of the vaccinia virus complement control protein is an inflammation modulatory protein.. Virology 229:126–33 [Google Scholar]
  52. Kotwal GJ, Miller CG, Justus DE. 1998. The inflammation modulatory protein (IMP) of cowpox virus drastically diminishes the tissue damage by down-regulating cellular infiltration resulting from complement activation.. Mol. Cell. Biochem. 185:39–46 [Google Scholar]
  53. Miller CG, Justus DE, Jayaraman S, Kotwal G J. 1995. Severe and prolonged inflammatory response to localized cowpox virus infection in footpads of C5-deficient mice: Investigation of the role of host complement in poxvirus pathogenesis.. Cell. Immunol. 162:326–32 [Google Scholar]
  54. Rosengard AM, Liu Y, Nie Z, Jimenez R. 2002. Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement.. Proc. Natl. Acad. Sci. USA 99:8808–13 [Google Scholar]
  55. Engelstad M, Howard ST, Smith GL. 1992. A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope.. Virology 188:801–10 [Google Scholar]
  56. Takahashi-Nishimaki F, Funahashi S, Miki K, Hashizume S, Sugimoto M. 1991. Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins.. Virology 181:158–64 [Google Scholar]
  57. Engelstad M, Smith GL. 1993. The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence.. Virology 194:627–37 [Google Scholar]
  58. Wolffe EJ, Isaacs SN, Moss B. 1993. Deletion of the vaccinia virus B5R-gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination.. J. Virol. 67:4732–41 [Google Scholar]
  59. Sanderson CM, Frischknecht F, Way M, Hollinshead M, Smith GL. 1998. Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion.. J. Gen. Virol. 79:1415–25 [Google Scholar]
  60. Mathew E, Sanderson CM, Hollinshead M, Smith GL. 1998. The extracellular domain of vaccinia virus protein B5r affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation.. J. Virol. 72:2429–38 [Google Scholar]
  61. Mathew EC, Sanderson CM, Hollinshead R, Smith GL. 2001. A mutational analysis of the vaccinia virus B5R protein.. J. Gen. Virol. 82:1199–213 [Google Scholar]
  62. Rodger G, Smith GL. 2002. Replacing the SCR domains of vaccinia virus protein B5R with EGFP causes a reduction in plaque size and actin tail formation but enveloped virions are still transported to the cell surface.. J. Gen. Virol. 83:323–32 [Google Scholar]
  63. Ward BM, Moss B. 2000. Golgi network targeting and plasma membrane internalization signals in vaccinia virus B5R envelope protein.. J. Virol. 74:3771–80 [Google Scholar]
  64. Ward BM, Moss B. 2001. Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera.. J. Virol. 75:4802–13 [Google Scholar]
  65. Herrera E, Lorenzo MD, Blasco R, Isaacs SN. 1998. Functional analysis of vaccinia virus B5R protein: essential role in virus envelopment is independent of a large portion of the extracellular domain.. J. Virol. 72:294–302 [Google Scholar]
  66. Law M, Smith GL. 2001. Antibody neutralization of the extracellular enveloped form of vaccinia virus.. Virology 280:132–42 [Google Scholar]
  67. Vanderplasschen A, Matthew E, Hollinshead M, Sim RB, Smith GL. 1998. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope.. Proc. Natl. Acad. Sci. USA 95:7544–49 [Google Scholar]
  68. Sen GC. 2001. Viruses and interferon.. Annu. Rev. Microbiol. 55:255–81 [Google Scholar]
  69. Samuel CE. 2001. Antiviral actions of interferons.. Clin. Microbiol. Rev. 14:778–809 [Google Scholar]
  70. Smith GL, Symons JA, Alcamí A. 1998. Poxviruses: interfering with interferon.. Semin. Virol. 8:409–18 [Google Scholar]
  71. Harris N, Buller RML, Karupiah G. 1995. Gamma intereron-induced, nitric oxide-mediated inhibition of vaccinia virus replication.. J. Virol. 69:910–15 [Google Scholar]
  72. Karupiah G, Fredrickson TN, Holmes KL, Khairallah LH, Buller RML. 1993. Importance of interferons in recovery from mousepox.. J. Virol. 67:4214–26 [Google Scholar]
  73. Melková A, Esteban M. 1994. Interferon-γ severely inhibits DNA synthesis of vaccinia virus in a macrophage cell line.. Virology 198:731–35 [Google Scholar]
  74. Karupiah G, Blanden RV, Ramshaw IA. 1990. Interferon gamma is involved in the recovery of athymic nude mice from recombinant vaccinia virus/interleukin 2 infection.. J. Exp. Med. 172:1495–503 [Google Scholar]
  75. Kohonen-Corish MR, King NJ, Woodhams CE, Ramshaw IA. 1990. Immunodeficient mice recover from infection with vaccinia virus expressing interferon-gamma.. Eur. J. Immunol. 20:157–61 [Google Scholar]
  76. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J. et al. 1994. Functional role of type I and type II interferons in antiviral defense.. Science 264:1918–21 [Google Scholar]
  77. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H. et al. 1993. Immune response in mice that lack the interferon-γ receptor.. Science 259:1742–45 [Google Scholar]
  78. van den Broek MF, Muller U, Huang S, Aguet M, Zinkernagel RM. 1995. Antiviral defense in mice lacking both α/β and γ interferon receptors.. J. Virol. 69:4792–96 [Google Scholar]
  79. Upton C, Mossman K, McFadden G. 1992. Encoding of a homolog of the interferon-γ receptor by myxoma virus.. Science 258:1369–72 [Google Scholar]
  80. Mossman K, Upton C, Buller RM, McFadden G. 1995. Species specificity of ectromelia virus and vaccinia virus interferon-γ binding proteins.. Virology 208:762–69 [Google Scholar]
  81. Alcamí A, Smith GL. 1995. Vaccinia, cowpox and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity.. J. Virol. 69:4633–39 [Google Scholar]
  82. Mossman K, Upton C, McFadden G. 1995. The myxoma virus-soluble interferon-γ receptor homolog, M-T7, inhibits interferon-γ in a species-specific manner.. J. Biol. Chem. 270:3031–38 [Google Scholar]
  83. Puehler F, Weining KC, Symons JA, Smith GL, Staeheli P. 1998. Vaccinia virus-encoded cytokine receptor binds and neutralizes chicken interferon-gamma.. Virology 248:231–40 [Google Scholar]
  84. Deleted in proof
  85. Symons JA, Tscharke DC, Price N, Smith GL. 2002. A study of the vaccinia virus interferon-gamma receptor and its contribution to virus virulence.. J. Gen. Virol. 83:1953–64 [Google Scholar]
  86. Alcami A, Smith GL. 1996. Soluble interferon-gamma receptors encoded by poxviruses.. Comp. Immunol. Microbiol. Infect. Dis. 19:305–17 [Google Scholar]
  87. Lalani AS, Graham K, Mossman K, Rajarathnam K, Clark-Lewis I. et al. 1997. The purified myxoma virus gamma interferon receptor homolog, M-T7, interacts with the heparin binding domains of chemokines.. J. Virol. 71:4356–63 [Google Scholar]
  88. Alcami A, Smith GL. 2002. The vaccinia virus soluble interferon-gamma receptor is a homodimer.. J. Gen. Virol. 83:545–49 [Google Scholar]
  89. Mossman K, Nation P, Macen J, Garbutt M, Lucas A. et al. 1996. Myxoma virus M-T7, a secreted homolog of the interferon-γ receptor, is a critical virulence factor for the development of myxomatosis in European rabbits.. Virology 215:17–30 [Google Scholar]
  90. Sroller V, Ludvikova V, Maresova L, Hainz P, Nemeckova S. 2001. Effect of IFN-gamma receptor gene deletion on vaccinia virus virulence.. Arch. Virol. 146:239–49 [Google Scholar]
  91. Verardi PH, Jones LA, Aziz FH, Ahmad S, Yilma T D. 2001. Vaccinia virus vectors with an inactivated gamma interferon receptor homolog gene (B8R) are attenuated in vivo without a concomitant reduction in immunogenicity.. J. Virol. 75:11–18 [Google Scholar]
  92. Smith VP, Alcami A. 2002. Inhibition of interferons by ectromelia virus.. J. Virol. 76:1124–34 [Google Scholar]
  93. Symons JA, Alcamí A, Smith GL. 1995. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity.. Cell 81:551–60 [Google Scholar]
  94. Colamonici OR, Domanski P, Sweitzer SM, Larner A, Buller RML. 1995. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon α transmembrane signaling.. J. Biol. Chem. 270:15974–78 [Google Scholar]
  95. Smith G, Chan YS. 1991. Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily.. J. Gen. Virol. 72:511–18 [Google Scholar]
  96. Liptáková H, Kontsekova E, Alcami A, Smith GL, Kontsek P. 1997. Analysis of an interaction between the soluble vaccinia virus-coded Type I interferon (IFN)-receptor and human IFN-α1 and IFN-α2.. Virology 232:86–90 [Google Scholar]
  97. Vancova I, La Bonnadiere C, Kontsek P. 1998. Vaccinia virus protein B18R inhibits the activity and cellular binding of the novel type interferon-delta.. J. Gen. Virol. 79:1647–49 [Google Scholar]
  98. Alcami A, Symons JA, Smith GL. 2000. The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN.. J. Virol. 74:11230–39 [Google Scholar]
  99. Morikawa S, Ueda Y. 1993. Characterization of vaccinia surface antigen expressed by recombinant baculovirus.. Virology 193:753–61 [Google Scholar]
  100. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. 2001. Interleukin-18 regulates both Th1 and Th2 responses.. Annu. Rev. Immunol. 19:423–74 [Google Scholar]
  101. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K. et al. 1997. Activation of interferon-gamma inducing factor mediated by interleukin-1 beta converting enzyme.. Science 275:206–9 [Google Scholar]
  102. Novick D, Kim SH, Fantuzzi G, Reznikov LL, Dinarello CA. et al. 1999. Interleukin-18 binding proteins: A novel modulator of the Th1 cytokine response.. Immunity 10:127–36 [Google Scholar]
  103. Aizawa Y, Akita K, Taniai M, Torigoe K, Mori T. et al. 1999. Cloning and expression of interleukin-18 binding protein.. FEBS Lett. 445:338–42 [Google Scholar]
  104. Xiang Y, Moss B. 1999. IL-18 binding and inhibition of interferon γ induction by human poxvirus-encoded proteins.. Proc. Natl. Acad. Sci. USA 96:11537–42 [Google Scholar]
  105. Xiang Y, Moss B. 2001. Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins.. J. Virol. 75:9947–54 [Google Scholar]
  106. Calderara S, Xiang Y, Moss B. 2001. Orthopoxvirus IL-18 binding proteins: affinities and antagonist activities.. Virology 279:22–26 [Google Scholar]
  107. Xiang Y, Moss B. 2001. Determination of the functional epitopes of human interleukin-18-binding protein by site-directed mutagenesis.. J. Biol. Chem. 276:17380–86 [Google Scholar]
  108. Born T, Morrison LA, Esteban DJ, VandenBos T, Thebeau LG. et al. 2000. A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response.. J. Immunol. 164:3246–54 [Google Scholar]
  109. Smith VP, Bryant NA, Alcamí A. 2000. Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins.. J. Gen. Virol. 81:1223–30 [Google Scholar]
  110. Shchelkunov SN, Totmenin AV, Babkin IV, Safronov PF, Ryazankina OI. et al. 2001. Human monkeypox and smallpox viruses: genomic comparison.. FEBS Lett. 509:66–70 [Google Scholar]
  111. Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish Gf. et al. 2001. Genome of lumpy skin disease virus.. J. Virol. 75:7122–30 [Google Scholar]
  112. Smith CA, Farrah T, Goodwin RG. 1994. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation and death.. Cell 76:959–62 [Google Scholar]
  113. Locksley RM, Killeen N, Lenardo MJ. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology.. Cell 104:487–501 [Google Scholar]
  114. Xu X, Nash P, McFadden G. 2000. Myxoma virus expresses a TNF receptor homolog with two distinct functions.. Virus Genes 21:97–109 [Google Scholar]
  115. Cunnion KM. 1999. Tumor necrosis factor receptors encoded by poxviruses.. Mol. Genet. Metab. 67:278–82 [Google Scholar]
  116. Schreiber M, Rajarathnam K, McFadden G. 1996. Mxyoma virus T2 protein, a tumor necrosis factor (TNF) receptor homolog, is secreted as a monomer and dimer that each bind rabbit TNFα, but the dimer is a more potent TNF inhibitor.. J. Biol. Chem. 271:13333–41 [Google Scholar]
  117. Loparev VN, Parsons JM, Knight JC, Panus JF, Ray CA. et al. 1998. A third distinct tumor necrosis factor receptor of orthopoxviruses.. Proc. Natl. Acad. Sci. USA 95:3786–91 [Google Scholar]
  118. Smith CA, Davis T, Wignall JM, Din WS, Farrah T. et al. 1991. T2 open reading frame from Shope fibroma virus encodes a soluble form of the TNF receptor.. Biochem. Biophys. Res. Commun. 176:335–42 [Google Scholar]
  119. Upton C, Macen JL, Schreiber M, McFadden G. 1991. Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence.. Virology 184:370–82 [Google Scholar]
  120. Macen JL, Graham KA, Lee SF, Schreiber M, Boshkov LK. et al. 1996. Expression of the myxoma virus tumor necrosis factor receptor homologue (T2) and M11L genes is required to prevent virus-induced apoptosis in infected rabbit T lymphocytes.. Virology 218:232–37 [Google Scholar]
  121. Schreiber M, Sedger L, McFadden G. 1997. Distinct domains of M-T2, the myxoma virus TNF receptor homolog, mediate extracellular TNF binding and intracellular apoptosis inhibition.. J. Virol. 71:2171–81 [Google Scholar]
  122. Sedger L, McFadden G. 1996. M-T2: A poxvirus TNF receptor homologue with dual activities.. Immunol. Cell Biol. 74:538–45 [Google Scholar]
  123. Hu FQ, Smith CA, Pickup DJ. 1994. Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the Type II TNF receptor.. Virology 204:343–56 [Google Scholar]
  124. Smith CA, Hu FQ, Smith TD, Richards CL, Smolak P. et al. 1996. Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LTα.. Virology 223:132–47 [Google Scholar]
  125. Saraiva M, Alcami A. 2001. CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses.. J. Virol. 75:226–33 [Google Scholar]
  126. Panus JF, Smith CA, Ray CA, Smith TD, Patel DD. et al. 2002. Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: a soluble, secreted CD30 homologue.. Proc. Natl. Acad. Sci. USA 99:8348–53 [Google Scholar]
  127. Reading PC, Khanna A, Smith GL. 2002. Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence.. Virology 292:285–98 [Google Scholar]
  128. Aguado B, Selmes IP, Smith GL. 1992. Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus.. J. Gen. Virol. 73:2887–902 [Google Scholar]
  129. Smith VP, Alcamí A. 2000. Expression of secreted cytokine and chemokine inhibitors by ectromelia virus.. J. Virol. 74:8460–71 [Google Scholar]
  130. Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP. et al. 1990. The complete DNA sequence of vaccinia virus.. Virology 179:247–66 [Google Scholar]
  131. Howard ST, Chan YC, Smith GL. 1991. Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumour necrosis factor receptor family.. Virology 180:633–47 [Google Scholar]
  132. Alcamí A, Khanna A, Paul NL, Smith GL. 1999. Vaccinia virus strains Lister, USSR and Evans express soluble and cell-surface tumour necrosis factor receptors.. J. Gen. Virol. 80:949–59 [Google Scholar]
  133. Paulose M, Bennett BL, Manning AM, Essani K. 1998. Selective inhibition of TNF-alpha induced cell adhesion molecular gene expression by tanapox virus.. Microb. Pathog. 25:33–41 [Google Scholar]
  134. Gil J, Rullas J, Alcami J, Esteban M. 2001. MC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-kappa B activation and apoptosis induced by PKR.. J. Gen. Virol. 82:3027–34 [Google Scholar]
  135. Oie KL, Pickup DJ. 2001. Cowpox virus and other members of the orthopoxvirus genus interfere with the regulation of NF-kappa B activation.. Virology 288:175–87 [Google Scholar]
  136. Alcami A, Smith GL. 1992. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection.. Cell 71:153–67 [Google Scholar]
  137. Spriggs MK, Hruby DE, Maliszewski CR, Pickup DJ, Sims JE. et al. 1992. Vaccinia and cowpox viruses encode a novel secreted interleukin-1 binding protein.. Cell 71:145–52 [Google Scholar]
  138. Alcami A, Smith GL. 1996. A mechanism for the inhibition of fever by a virus.. Proc. Natl. Acad. Sci. USA 93:11029–34 [Google Scholar]
  139. Murphy PM. 2001. Viral exploitation and subversion of the immune system through chemokine mimicry.. Nature 2:116–22 [Google Scholar]
  140. Kotwal GJ. 2000. Poxviral mimicry of complement and chemokine system components: What's the end game?. Immunol. Today 21:242–48 [Google Scholar]
  141. Lalani AS, Barrett J, McFadden G. 2000. Modulating chemokines: more lessons from viruses.. Immunol. Today 21:100–6 [Google Scholar]
  142. Mahalingam S, Karupiah G. 2000. Modulation of chemokines by poxvirus infections.. Curr. Opin. Immunol. 12:409–12 [Google Scholar]
  143. Rosenkilde MM, Walkhoer M, Luttichau HR, Schwartz TW. 2001. Virally encoded 7TM receptors.. Oncogene 20:1582–93 [Google Scholar]
  144. Lalani AS, McFadden G. 1997. Secreted poxvirus chemokine binding proteins.. J. Leukoc. Biol. 62:570–76 [Google Scholar]
  145. Seet BT, McFadden G. 2002. Viral chemokine-binding proteins.. J. Leukoc. Biol. 72:24–34 [Google Scholar]
  146. Liu LY, Lalani A, Dai E, Seet B, Macauley C. et al. 2000. The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury.. J. Clin. Invest. 105:1613–21 [Google Scholar]
  147. Graham KA, Lalani AS, Macen JL, Ness TL, Barry M. et al. 1997. The T1/35 kDa family of poxvirus secreted proteins bind chemokines and modulate leukocyte influx into virus infected tissues.. Virology 229:12–24 [Google Scholar]
  148. Alcamí A, Symons JA, Collins PD, Williams TJ, Smith GL. 1998. Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus.. J. Immunol. 160:624–33 [Google Scholar]
  149. Smith CA, Smith TD, Smolak PJ, Friend D, Hagen H. et al. 1997. Poxvirus genomes encode a secreted soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors.. Virology 236:316–27 [Google Scholar]
  150. Lalani AS, Ness TL, Singh R, Harrison JK, Seet BT. et al. 1998. Functional comparisons among members of the poxvirus T1/35 kDa family of soluble CC-chemokine inhibitor glycoproteins.. Virology 250:173–84 [Google Scholar]
  151. Burns JM, Dairaghi DJ, Deitz M, Tsang M, Schall TJ. 2002. Comprehensive mapping of poxvirus vCCI chemokine-binding protein—expanded range of ligand interactions and unusual dissociation kinetics.. J. Biol. Chem. 277:2785–89 [Google Scholar]
  152. Seet BT, Singh R, Paavola C, Lau EK, Handel TM. et al. 2001. Molecular determinants for CC-chemokine recognition by a poxvirus CC-chemokine inhibitor.. Proc. Natl. Acad. Sci. USA 98:9008–13 [Google Scholar]
  153. Beck CG, Studer C, Zuber JF, Demange BJ, Manning U. et al. 2001. The viral CC chemokine-binding protein vCCI inhibits monocyte chemoattractant protein-1 activity by masking its CCR2B-binding site.. J. Biol. Chem. 276:43270–76 [Google Scholar]
  154. Lalani AS, Masters J, Graham K, Liu L, Lucas A. et al. 1999. Role of the myxoma virus soluble CC-chemokine inhibitor glycoprotein, M-T1, during myxoma virus pathogenesis.. Virology 256:233–45 [Google Scholar]
  155. Martinez-Pomares L, Thompson JP, Moyer RW. 1995. Mapping and investigation of the role in pathogenesis of the major unique secreted 35-kDa protein of rabbitpox virus.. Virology 206:591–600 [Google Scholar]
  156. Seet BT, Barrett J, Robichaud J, Shilton B, Singh R. et al. 2001. Glyosaminoglycan-binding properties of the myxoma virus CC-chemokine inhibitor, M-T1.. J. Biol. Chem. 276:30504–13 [Google Scholar]
  157. Carfi A, Smith CA, Smolak PJ, McGrew J, Wiley DC. 1999. Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus.. Proc. Natl. Acad. Sci. USA 96:12379–83 [Google Scholar]
  158. Bugert JJ, Lohmuller C, Damon I, Moss B, Darai G. 1998. Chemokine homolog of molluscum contagiosum virus: sequence conservation and expression.. Virology 242:51–59 [Google Scholar]
  159. Ishikawa-Mochizuki I, Kitaura M, Baba M, Nakayama T, Izawa D. et al. 1999. Molecular cloning of a novel CC chemokine, interleukin-11 receptor alpha-locus chemokine (ILC), which is located on chromosome 9p13 and a potential homologue of a CC chemokine encoded by molluscum contagiosum virus.. FEBS Lett. 460:544–48 [Google Scholar]
  160. Krathwohl MD, Hromas R, Brown DR, Broxmeyer HE, Fife KH. 1997. Functional characterization of the C-C chemokine-like molecules encoded by molluscum contagiosum virus types 1 and 2.. Proc. Natl. Acad. Sci. USA 94:9875–80 [Google Scholar]
  161. Damon I, Murphy PM, Moss B. 1998. Broad spectrum chemokine antagonistic activity of a human poxvirus chemokine homolog.. Proc. Natl. Acad. Sci. USA 95:6403–7 [Google Scholar]
  162. Luttichau BH, Stine J, Boesen TP, Johnsen AH, Chanry D. et al. 2000. A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus Molluscum Contagiosum.. J. Exp. Med. 191:171–80 [Google Scholar]
  163. Luttichau HR, Gerstoft J, Schwartz TW. 2001. MC148 encoded by human molluscum contagiosum poxvirus is an antagonist for human but not murine CCR8.. J. Leukoc. Biol. 70:277–82 [Google Scholar]
  164. Luttichau HR, Lewis IC, Gerstoft J, Schwartz TW. 2001. The herpesvirus 8-encoded chemokine vMIP-II, but not the poxvirus-encoded chemokine MC148, inhibits the CCR10 receptor.. Eur. J. Immunol. 31:1217–20 [Google Scholar]
  165. deBruyne LA, Li K, Bishop DK, Bromberg JS. 2000. Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity.. Gene Ther. 7:575–82 [Google Scholar]
  166. Knight JC, Novembre FJ, Brown DR, Goldsmith CS, Esposito JJ. 1989. Studies on Tanapox virus.. Virology 172:116–24 [Google Scholar]
  167. Essani K, Chalasani S, Eversole R, Beuving L, Birmingham L. 1994. Multiple anti-cytokine activities secreted from tanapox virus-infected cells.. Microb. Pathog. 17:347–53 [Google Scholar]
  168. Deane D, McInnes CJ, Percival A, Wood A, Thomson J. et al. 2000. Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2.. J. Virol. 74:1313–20 [Google Scholar]
  169. Ng A, Tscharke DC, Reading PC, Smith GL. 2001. The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence.. J. Gen. Virol. 82:2095–105 [Google Scholar]
  170. Spriggs MK. 1999. Shared resources between the neural and immune systems: semaphorins join the ranks.. Curr. Opin. Immunol. 11:387–91 [Google Scholar]
  171. Tamagnone L, Comoglio PM. 2000. Signalling by semaphorin receptors: cell guidance and beyond.. Cell Biol. 10:377–83 [Google Scholar]
  172. Kolodkin AL, Matthes DJ, Goodman CS. 1993. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules.. Cell 75:1389–99 [Google Scholar]
  173. Comeau MR, Johnson R, DuBose RF, Petersen M, Gearing P. et al. 1998. A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR.. Immunity 8:473–82 [Google Scholar]
  174. Ensser A, Fleckenstein B. 1995. Alcelaphine herpesvirus type 1 has a semaphorin-like gene.. J. Gen. Virol. 76:1063–67 [Google Scholar]
  175. Gardner JD, Tscharke DC, Reading PC, Smith GL. 2001. Vaccinia virus semaphorin A39R is a 50–55 kDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model.. J. Gen. Virol. 82:2083–93 [Google Scholar]
  176. McFadden G, Graham K, Opgenorth A. 1994. Poxvirus growth factors. In In Viroceptors, Virokines and Related Immune Modulators Encoded by DNA Viruses, ed. G McFadden 1–15 Austin, TX: Landes [Google Scholar]
  177. Stein RA, Staros JV. 2000. Evolutionary analysis of the ErbB receptor and ligand families.. J. Mol. Evol. 50:397–412 [Google Scholar]
  178. Tzahar E, Moyer JD, Waterman H, Barbacci EG, Levkowitz G. et al. 1998. Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network.. EMBO J. 17:5948–63 [Google Scholar]
  179. McFadden G, Moyer R. 2000. Poxvirus growth factors related to epidermal growth factor.. In Cytokine Reference Database, ed. JJ Oppenheim, M Feldmann. http://www.academicpress.com/cytokinereference
  180. Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin H. et al. 1999. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (F1b-1) receptor tyrosine kinases.. EMBO J. 18:363–74 [Google Scholar]
  181. Clauss M. 2000. Molecular biology of the VEGF and the VEGF receptor family.. Semin. Thromb. Hemost. 26:561–69 [Google Scholar]
  182. McFadden G, Moyer R. 2000. Poxvirus vascular endothelial growth factor (VEGF) homologs of Orf virus.. In Cytokine Reference Database, ed. JJ Oppenheim, M Feldmann. http://www.aca demicpress.com/cytokinereference
  183. Savory LJ, Stacker SA, Fleming SB, Niven BE, Mercer AA. 2000. Viral vascular endothelial growth factor plays a critical role in orf virus infection.. J. Virol. 74:10699–706 [Google Scholar]
  184. Wise LM, Veikkola T, Mercer AA, Savory LJ, Fleming SB. et al. 1999. Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1.. Proc. Natl. Acad. Sci. USA 96:3071–76 [Google Scholar]
  185. Fickenscher H, Hor S, Kupers H, Knappe A, Wittmann S. et al. 2002. The interleukin-10 family of cytokines.. Trends Immunol. 23:89–96 [Google Scholar]
  186. Fleming SB, McCaughan CA, Andrews AE, Nash AD, Mercer AA. 1997. A homolog of interleukin-10 is encoded by the poxvirus orf virus.. J. Virol. 71:4857–61 [Google Scholar]
  187. Imlach W, McCaughan C, Mercer A, Haig D, Fleming S. 2002. Orf virus-encoded interleukin-10 stimulates the proliferation of murine mast cells and inhibits cytokine synthesis in murine peritoneal macrophages.. J. Gen. Virol. 83:1049–58 [Google Scholar]
  188. Upton C, Macen JL, Wishart DS, McFadden G. 1990. Myxoma virus and malignant rabbit fibroma virus encode a serpin-like protein important for virus virulence.. Virology 179:618–31 [Google Scholar]
  189. Nash P, Barry M, Seet BT, Veugelers K, Hota S. et al. 2000. Post-translational modification of the myxoma virus anti-inflammatory serpin, SERP-1 by a virally encoded sialyltransferase.. Biochem. J. 347:375–82 [Google Scholar]
  190. Macen JL, Upton C, Nation N, McFadden G. 1993. SERP-1, a serine proteinase inhibitor encoded by myxoma virus, is a secreted glycoprotein that interferes with inflammation.. Virology 195:348–63 [Google Scholar]
  191. Nash P, Whitty A, Handwerker J, Macen J, McFadden G. 1998. Inhibitory specificity of the anti-inflammatory myxoma virus serpin, SERP-1.. J. Biol. Chem. 273:20982–91 [Google Scholar]
  192. Lomas DA, Evans DL, Upton C, McFadden G, Carrell RW. 1993. Inhibition of plasmin, urokinase, tissue plasminogen activator, and C1S by a myxoma virus serine proteinase inhibitor.. J. Biol. Chem. 268:516–21 [Google Scholar]
  193. Zhou J, Sun XY, Fernando GJ, Frazer IH. 1992. The vaccinia virus K2L gene encodes a serine protease inhibitor which inhibits cell-cell fusion.. Virology 189:678–86 [Google Scholar]
  194. Law KM, Smith GL. 1992. A vaccinia serine protease inhibitor which prevents virus-induced cell fusion.. J. Gen. Virol. 73:549–57 [Google Scholar]
  195. Turner PC, Moyer RW. 1992. An Orthopoxvirus serpinlike gene controls the ability of infected cells to fuse.. J. Virol. 66:2076–85 [Google Scholar]
  196. Turner PC, Baquero MT, Yuan S, Thoennes SR, Moyer RW. 2000. The cowpox virus serpin SPI-3 complexes with and inhibits urokinase-type and tissue-type plasmiogen activators and plasmin.. Virology 272:267–380 [Google Scholar]
  197. Turner PC, Moyer RW. 1995. Orthopoxvirus fusion inhibitor glycoprotein SPI-3 (open reading frame K2L) contains motifs characteristic of serine proteinase inhibitors that are not required for control of cell fusion.. J. Virol. 69:5978–87 [Google Scholar]
  198. Wang YX, Turner PC, Ness TL, Moon KB, Schoeb TR. et al. 2000. The cowpox virus SPI-3 and myxoma virus SERP1 serpins are not functionally interchangeable despite their similar proteinase inhibition profiles in vitro.. Virology 272:281–92 [Google Scholar]
  199. Hay S, Kannourakis G. 2002. A time to kill: viral manipulation of the cell death program.. J. Gen. Virol. 83:1547–64 [Google Scholar]
  200. Roulston A, Marcellus RC, Branton PE. 1999. Viruses and apoptosis.. Annu. Rev. Microbiol. 53:577–628 [Google Scholar]
  201. Hengartner MO. 2000. The biochemistry of apoptosis.. Nature 407:770–76 [Google Scholar]
  202. Everett H, McFadden G. 1999. Apoptosis: An innate immune response to virus infection.. Trends Microbiol. 7:160–65 [Google Scholar]
  203. Shisler JL, Moss B. 2001. Immunology 102 at poxvirus U: avoiding apoptosis.. Semin. Immunol. 13:67–72 [Google Scholar]
  204. Barry M, McFadden G. 2000. Regulation of apoptosis by poxviruses. In Effects of Microbes on the Immune System, ed. M Cunningham, R Fujinami 509–20 Philadelphia: Lippincott-Raven [Google Scholar]
  205. Everett H, McFadden G. 2002. Poxviruses and apoptosis: a time to die.. Curr. Opin. Microbiol. 5:395–402 [Google Scholar]
  206. Bertin J, Armstrong RC, Ottilie S, Martin DA, Wang Y. et al. 1997. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis.. Proc. Natl. Acad. Sci. USA 94:1772–76 [Google Scholar]
  207. Hu SM, Vincenz C, Buller M, Dixit VM. 1997. A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis.. J. Biol. Chem. 272:9621–24 [Google Scholar]
  208. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E. et al. 1997. Viral FLICE-inhibitory proteins (vFLIPs) prevent apoptosis induced by death receptors.. Nature 386:517–21 [Google Scholar]
  209. Shisler JL, Moss B. 2001. Molluscum contagiosum virus inhibitors of apoptosis: the MC159 v-FLIP protein blocks Fas-induced activation of procaspases and degradation of the related MC160 protein.. Virology 282:14–25 [Google Scholar]
  210. Garvey TL, Bertin J, Siegel RM, Wang GH, Leonardo MJ. et al. 2002. Binding of FADD and Caspase-8 to molluscun contagiosum virus MC159 is not sufficient for its antiapoptotic function.. J. Virol. 76:697–706 [Google Scholar]
  211. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR. et al. 1992. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme.. Cell 69:597–604 [Google Scholar]
  212. Thompson JP, Turner PC, Ali AN, Crenshaw BC, Moyer RW. 1993. The effects of serpin gene mutations on the distinctive pathobiology of cowpox and rabbitpox virus following intranasal inoculation of Balb/c mice.. Virology 197:328–38 [Google Scholar]
  213. Quan LT, Caputo A, Bleackley RC, Pickup DJ, Salvesen GS. 1995. Granzyme B is inhibited by the cowpox virus serpin cytokine response modifier A.. J. Biol. Chem. 270:10377–79 [Google Scholar]
  214. Tewari M, Telford WG, Miller RA, Dixit VM. 1995. Crm A, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis.. J. Biol. Chem. 270:22705–8 [Google Scholar]
  215. Screpanti V, Wallin RP, Ljunggren HG, Grandien A. 2001. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells.. J. Immunol. 167:2068–73 [Google Scholar]
  216. Miura M, Zhu H, Rotello R, Hatweig EA, Yuan J. 1993. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3.. Cell 75:653–60 [Google Scholar]
  217. Salvesen GS, Dixit VM. 1997. Caspases: intracellular signaling by proteolysis.. Cell 91:443–46 [Google Scholar]
  218. Boudreau N, Sympson CJ, Werb Z, Bissell MJ. 1995. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix.. Science 267:891–93 [Google Scholar]
  219. Gurevich RM, Regula KM, Kirshenbaum LA. 2001. Serpin protein CrmA suppresses hypoxia-mediated apoptosis of ventricular myocytes.. Circulation 103:1984–91 [Google Scholar]
  220. Tewari M, Dixit VM. 1995. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product.. J. Biol. Chem. 270:3255–60 [Google Scholar]
  221. Enari M, Hug H, Nagata S. 1995. Involvement of an ICE-like protease in Fas-mediated apoptosis.. Nature 375:78–81 [Google Scholar]
  222. Los M, Van deCraen M, Penning LC, Schenk H, Westendorp M. et al. 1995. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis.. Nature 375:81–83 [Google Scholar]
  223. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES. 1996. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases.. Proc. Natl. Acad. Sci. USA 93:14486–91 [Google Scholar]
  224. Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA. et al. 1994. Inhibition of interleukin-1β converting enzyme by the cowpox virus serpin CrmA: an example of cross-class inhibition.. J. Biol. Chem. 269:19331–37 [Google Scholar]
  225. Simonovic M, Gettins PGW, Volz K. 2000. Crystal structure of viral serpin crmA provides insights into its mechanism of cysteine proteinase inhibition.. Protein Sci. 9:1423–27 [Google Scholar]
  226. Dobbelstein M, Shenk T. 1996. Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product.. J. Virol. 70:6479–85 [Google Scholar]
  227. Kettle S, Alcami A, Khanna A, Ehret R, Jassoy C. et al. 1997. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1β converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever.. J. Gen. Virol. 78:677–85 [Google Scholar]
  228. Macen J, Takahashi A, Moon KB, Nathaniel R, Turner PC. et al. 1998. Activation of caspases in pig kidney cells infected with wild-type and CrmA/SPI-2 mutants of cowpox and rabbitpox viruses.. J. Virol. 72:3524–33 [Google Scholar]
  229. Tscharke DC, Reading PC, Smith GL. 2002. Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes.. J. Gen. Virol. 83:1977–86 [Google Scholar]
  230. Petit F, Bertagnoli S, Gelfi J, Fassy F, Boucraut-Baralon C. et al. 1996. Characterization of a myxoma virus-encoded serpin-like protein with activity against interleukin-1β converting enzyme.. J. Virol. 70:5860–66 [Google Scholar]
  231. Messud-Petit F, Gelfi J, Delverdier M, Amardeilh M-F, Py R. et al. 1998. SERP-2, an inhibitor of the interleukin-1β-converting enzyme, is critical in the pathobiology of myxoma virus.. J. Virol. 72:7830–39 [Google Scholar]
  232. Turner PC, Sancho MC, Theonnes SR, Caputo A, Bleackley RC. et al. 1999. Myxoma virus SERP-2 is a weak inhibitor of granzyme B and interleukin-1β-converting enzyme in vitro and unlike CrmA cannot block apoptosis in cowpox virus-infected cells.. J. Virol. 73:6394–404 [Google Scholar]
  233. Gil J, Esteban M. 2000. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action.. Apoptosis 5:107–14 [Google Scholar]
  234. Davies MV, Chang H-W, Jacobs BL, Kaufman RJ. 1993. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms.. J. Virol. 67:1688–92 [Google Scholar]
  235. Kibler KV, Shors T, Perkins KB, Zeman CC, Banaszak MP. et al. 1997. Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells.. J. Virol. 71:1992–2003 [Google Scholar]
  236. Ezelle HJ, Balachandran S, Sicheri F, Polyak SJ, Barber GN. 2001. Analyzing the mechanisms of interferon-induced apoptosis using CrmA and hepatitis C virus NS5A.. Virology 281:124–37 [Google Scholar]
  237. Shisler JL, Senkevich TG, Berry MJ, Moss B. 1998. Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus.. Science 279:102–5 [Google Scholar]
  238. Brick DJ, Burke RD, Schiff L, Upton C. 1998. Shope fibroma virus Ring finger protein N1R binds DNA and inhibits apoptosis.. Virology 249:42–51 [Google Scholar]
  239. Brick DJ, Burke RD, Minckley AA, Upton C. 2000. Ectromelia virus virulence factor p28 acts upstream of caspase-3 in response to UV light-induced apoptosis.. J. Gen. Virol. 81:1087–97 [Google Scholar]
  240. Everett H, McFadden G. 2001. Viruses and apoptosis: meddling with mitochondria.. Virology 288:1–7 [Google Scholar]
  241. Opgenorth A, Graham K, Nation N, Strayer D, McFadden G. 1992. Deletion analysis of two tandemly arranged virulence genes in myxoma virus, M11L and myxoma growth factor.. J. Virol. 66:4720–31 [Google Scholar]
  242. Everett H, Barry M, Lee SF, Sun XJ, Graham K. et al. 2000. M11L: A novel mitochondria-localized protein of myxoma virus that blocks apoptosis in infected leukocytes.. J. Exp. Med. 191:1487–98 [Google Scholar]
  243. Wasilenko ST, Meyers AF, Vander Helm K, Barry M. 2001. Vaccinia virus infection disarms the mitochondrion-mediated pathway of the apoptotic cascade by modulating the permeability transition pore.. J. Virol. 75:11437–48 [Google Scholar]
  244. Barry M, Hnatiuk S, Mossman K, Lee S-F, Boshkov L. et al. 1997. The myxoma virus M-T4 gene encodes a novel RDEL-containing protein that is retained within the endoplasmic reticulum and is important for the productive infection of lymphocytes.. Virology 239:360–77 [Google Scholar]
  245. Hnatiuk S, Barry M, Zeng W, Liu LY, Lucas A. et al. 1999. Role of the C-terminal RDEL motif of the myxoma virus M-T4 protein in terms of apoptosis regulation and viral pathogenesis.. Virology 263:290–306 [Google Scholar]
  246. Mossman K, Lee SF, Barry M, Boshkov L, McFadden G. 1996. Disruption of M-T5, a novel myxoma virus gene member of the poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits.. J. Virol. 70:4394–410 [Google Scholar]
  247. Ink BS, Gilbert CS, Evans GI. 1995. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes.. J. Virol. 69:661–68 [Google Scholar]
  248. Barber GN. 2001. Host defence, viruses and apoptosis.. Cancer Death Differ. 8:113–26 [Google Scholar]
  249. Jacobs BL, Langland JO. 1996. When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA.. Virology 219:339–49 [Google Scholar]
  250. Chang H-W, Watson JC, Jacobs BL. 1992. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase.. Proc. Natl. Acad. Sci. USA 89:4825–29 [Google Scholar]
  251. Sharp TV, Moonan F, Romashko A, Joshi B, Barber GN. et al. 1998. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR—implications for PKR autoregulation.. Virology 250:302–15 [Google Scholar]
  252. Smith EJ, Marie I, Prakash A, Garcia-Sastre A, Levy DE. 2001. IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or I kappa B kinase but is blocked by vaccinia virus E3L protein.. J. Biol. Chem. 276:8951–57 [Google Scholar]
  253. Liu Y, Wolff KC, Jacobs BL, Samuel CE. 2001. Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity.. Virology 289:378–87 [Google Scholar]
  254. Rogan S, Heaphy S. 2000. The vaccinia virus E3L protein interacts with SUMO-1 and ribosomal protein L23a in a yeast two hybrid assay.. Virus Genes 21:193–95 [Google Scholar]
  255. Xiang Y, Condit RC, Vijaysri S, Jacobs B, Williams BR. et al. 2002. Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus.. J. Virol. 76:5251–59 [Google Scholar]
  256. Beattie E, Tartaglia J, Paoletti E. 1991. Vaccinia virus-encoded eIF-2α homolog abrogates the antiviral effect of interferon.. Virology 183:419–22 [Google Scholar]
  257. Carroll K, Elroystein O, Moss B, Jagus R. 1993. Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor-2-alpha-specific protein kinase.. J. Biol. Chem. 268:12837–42 [Google Scholar]
  258. Beattie E, Denzler KL, Tartaglia J, Perkus ME, Paoletti E. et al. 1995. Reversal of the interferon-sensitive phenotype of a vaccinia virus lacking E3L by expression of the reovirus S4 gene.. J. Virol. 69:499–505 [Google Scholar]
  259. Beattie E, Kauffman EB, Martinez H, Perkus ME, Jacobs BL. et al. 1996. Host-range restriction of vaccinia virus E3L-specific deletion mutants.. Virus Genes 12:89–94 [Google Scholar]
  260. Brandt TA, Jacobs BL. 2001. Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model.. J. Virol. 75:850–56 [Google Scholar]
  261. McInnes CJ, Wood AR, Nettleton PF, Gilray JA. 2001. Genomic comparison of an avirulent strain of orf virus with that of a virulent wild type isolate reveals that the orf virus G2L gene is non-essential for replication.. Virus Genes 22:141–50 [Google Scholar]
  262. McInnes CJ, Wood AR, Mercer AA. 1998. Orf virus encodes a homolog of the vaccinia virus interferon resistance gene E3L.. Virus Genes 17:107–15 [Google Scholar]
  263. Kawagishi-Kobayashi M, Cao CN, Lu JM, Ozato K, Dever TE. 2000. Pseudosubstrate inhibition of protein kinase PKR by swine pox virus C8L gene product.. Virology 276:424–34 [Google Scholar]
  264. Fang Z-Y, Limbach K, Tartaglia J, Hammonds J, Chen X. et al. 2001. Expression of vaccinia E3L and K3L genes by a novel recombinant canarypox HIV vaccine vector enhances HIV-1 pseudovirion production and inhibits apoptosis in human cells.. Virology 291:272–84 [Google Scholar]
  265. Najarro P, Traktman P, Lewis JA. 2001. Vaccinia virus blocks gamma interferon signal transduction: Viral VH1 phosphatase reverses Stat1 activation.. J. Virol. 75:3185–96 [Google Scholar]
  266. O'Neill L. 2000. The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defence.. Biochem. Soc. 28:557–63 [Google Scholar]
  267. Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK. et al. 2000. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling.. Proc. Natl. Acad. Sci. USA 97:10162–67 [Google Scholar]
  268. Lucas A, Liu L, Macen J, Nash P, Dai E. et al. 1996. Virus-encoded serine proteinase inhibitor SERP-1 inhibits atherosclerotic plaque development after balloon angioplasty.. Circulation 94:2890–900 [Google Scholar]
  269. Miller L, Dai E, Nash P, Liu L, Icton C. et al. 2000. Inhibition of transplant vasculopathy in a rat aortic model after infusion of an anti-inflammatory viral serpin.. Circulation 101:1598–605 [Google Scholar]
  270. Hausen B, Boeke K, Berry GJ, Morris RE. 2001. Viral serine proteinase inhibitor (Serp-1) effectively decreases the incidence of graft vasculopathy in heterotopic heart allografts.. Transplantation 72:364–68 [Google Scholar]
  271. Maksymowych WP, Nation N, Nash PD, Macen J, Lucas A. et al. 1996. Amelioration of antigen-induced arthritis in rabbits treated with a secreted viral serine proteinase inhibitor.. J. Rheumatol. 23:878–82 [Google Scholar]
  272. Dabbagh K, Xiao Y, Smith C, Stepick-Biek P, Kim SG. et al. 2000. Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI.. J. Immunol. 165:3418–22 [Google Scholar]
  273. DeBruyne LA, Li K, Bishop DK, Bromberg JS. 2000. Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity.. Gene Ther. 7:575–82 [Google Scholar]
  274. Afonso CL, Tulman ER, Lu Z, Zsak L, Sandybaev NT. et al. 2002. The genome of camelpox virus.. Virology 295:1–9 [Google Scholar]
  275. Shchelkunov SN, Safronov PF, Totmenin AV, Petrov NA, Ryazankina OI. et al. 1998. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins.. Virology 243:432–60 [Google Scholar]
  276. Shchelkunov SN, Totmenin AV, Safronov PF, Mikheev MV, Gutorov VV. et al. 2002. Analysis of the monkeypox virus genome.. Virology 297:172–94 [Google Scholar]
  277. Shchelkunov SN, Blinov VM, Sandakhchiev LS. 1993. Genes of variola and vaccinia viruses necessary to overcome the host protective mechanism.. FEBS Lett. 319:80–83 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error