1932

Abstract

Abstract

After starting out to become a physician, by a series of accidents I found myself at NIH in 1951 during its most productive growth phase. At age 26, I had a fully funded, independent laboratory and did not know what to work on. With advice from colleagues, I initiated a study of how penicillin kills bacteria. Twenty years later, my lab had outlined the structure and biosynthesis of the peptidoglycan of bacterial cell walls and had discovered that penicillin inhibited the terminal step in its biosynthesis catalyzed by transpeptidases. I then switched fields, moving to Harvard in 1968 and beginning the study of human HLA proteins. Twenty-five years later, the last half of which was spent in a stimulating collaboration with the late Don Wiley, our labs had isolated, crystallized, and elucidated the three-dimensional structures of these molecules and shown that their principal function was to present peptides to the immune system in initiating an immune response. More recently, the laboratory has focused on natural killer cells and their roles in peripheral blood and in the pregnant uterine decidua. It has been a wonderful scientific journey.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.immunol.24.021605.090703
2006-04-23
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/iy/24/1/annurev.immunol.24.021605.090703.html?itemId=/content/journals/10.1146/annurev.immunol.24.021605.090703&mimeType=html&fmt=ahah

Literature Cited

  1. Strominger J. 1948. A national science foundation. Yale. J. Biol. Med. 20:577 [Google Scholar]
  2. Park JT. 1952. Uridine-5′-pyrophosphate derivatives. II. Isolation from Staphylococcus aureus. J. Biol. Chem. 194:877–84 [Google Scholar]
  3. Reissig JL, Strominger JL, Leloir LF. 1955. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 217:959–66 [Google Scholar]
  4. Strominger JL. 1957. Microbial uridine-5′-pyrophosphate N-acetylamino sugar compounds. I. Biology of the penicillin-induced accumulation. J. Biol. Chem. 224:509–23 [Google Scholar]
  5. Strominger JL, Heppel LA, Maxwell ES. 1959. Nucleoside monophosphate kinases. I. Transphosphorylation between adenosine triphosphate and nucleoside monophosphates. Biochim. Biophys. Acta 32:412–21 [Google Scholar]
  6. Strominger JL, Kalckar HM, Axelrod J, Maxwell ES. 1954. Enzymatic oxidation of uridine diphosphate glucose to uridine diphosphate glucuronic acid. J. Am. Chem. Soc. 76:6411 [Google Scholar]
  7. Anderson EP, Isselbacher KJ, Kalckar HM. 1957. Defect in uptake of galactose-1-phosphate into liver nucleotides in congenital galactosemia. Science 125:113–14 [Google Scholar]
  8. Strominger JL. 1959. The amino acid sequence in the uridine nucleotide-peptide from Staphylococcus aureus. Comp. Rend. Trav. Lab. Carlsberg 31:181 [Google Scholar]
  9. Park JT, Strominger JL. 1957. Mode of action of penicillin. Science 125:99–101 [Google Scholar]
  10. Strominger JL, Park JT, Thompson RE. 1959. Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J. Biol. Chem. 234:3263–68 [Google Scholar]
  11. Nathenson SG, Strominger JL. 1961. Effects of penicillin on the biosynthesis of the cell walls of Escherichia coli and Staphylococcus aureus. J. Pharmacol. Exp. Ther. 131:1–6 [Google Scholar]
  12. Strominger JL, Ghuysen JM. 1967. Mechanisms of enzymatic bacteriaolysis. Cell walls of bacteria are solubilized by action of either specific carbohydrases or specific peptidases. Science 156:213–21 [Google Scholar]
  13. Strominger JL. 1970. Penicillin-sensitive enzymatic reactions in bacterial cell wall synthesis. In Harvey Lectures pp. 179–213 New York: Academic [Google Scholar]
  14. Meadow PM, Anderson JS, Strominger JL. 1964. Enzymatic polymerization of UDP-acetylmuramyl.l-ala.d-glu.l-lys.d-ala.d-ala and UDP-acetylglucosamine by a particulate enzyme from Staphylococcus aureus and its inhibition by antibiotics. Biochem. Biophys. Res. Commun. 14:382–87 [Google Scholar]
  15. Strominger JL, Okazaki T, Okazaki R. 1963. Oxidation and reduction of nucleotide-linked sugars. In The Enzymes ed. P Boyer, H Lardy, K Myrback p. 161 New York: Academic [Google Scholar]
  16. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N. et al. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–34 [Google Scholar]
  17. Juergens WG, Sanderson AR, Strominger JL. 1963. Chemical basis for an immunological specificity of a strain of Staphylococcus aureus. J. Exp. Med. 117:925–35 [Google Scholar]
  18. Krueger L, Luederitz O, Strominger JL, Westphal O. 1962. [On the immunochemistry of O antigens of Enterobacteriaceae. VII. The relation of hexoses and 6-desoxyhexoses in Salmonella lipopolysaccharides to the D and L group.]. Biochem Z 335:548–58 [Google Scholar]
  19. Izaki K, Matsuhashi M, Strominger JL. 1966. Glycopeptide transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Proc. Natl. Acad. Sci. USA 55:656–63 [Google Scholar]
  20. Tipper DJ, Strominger JL. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. USA 54:1133–41 [Google Scholar]
  21. Lee W, McDonough MA, Kotra L, Li ZH, Silvaggi NR. et al. 2001. A 1.2-A snapshot of the final step of bacterial cell wall biosynthesis. Proc. Natl. Acad. Sci. USA 98:1427–31 [Google Scholar]
  22. Anderson JS, Matsuhashi M, Haskin MA, Strominger JL. 1965. Lipid-Phospho-acetylmuramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide: presumed membrane transport intermediates in cell wall synthesis. Proc. Natl. Acad. Sci. USA 53:881–89 [Google Scholar]
  23. Higashi Y, Strominger JL, Sweeley CC. 1967. Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. Proc. Natl. Acad. Sci. USA 57:1878–84 [Google Scholar]
  24. Matsuhashi M, Strominger JL. 1964. Thymidine diphosphate 4-acetamido-4, 6-dideoxyhexoses. I. Enzymatic synthesis by strains of Escherichia coli. J. Biol. Chem. 239:2454–63 [Google Scholar]
  25. Roberts WS, Petit JF, Strominger JL. 1968. Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Specificity in the utilization of L-alanyl transfer ribonucleic acid for interpeptide bridge synthesis in Arthrobacter crystallopoietes. J. Biol. Chem. 243:768–72 [Google Scholar]
  26. Strominger JL, Threnn RH. 1959. Accumulation of a uridine nucleotide in Staphylococcus aureus as the consequence of lysine deprivation. Biochim. Biophys. Acta 36:83–92 [Google Scholar]
  27. Adam A, Petit JF, Lefrancier P, Lederer E. 1981. Muramyl peptides. Chemical structure, biological activity and mechanism of action. Mol. Cell. Biochem. 41:27–47 [Google Scholar]
  28. Janeway CA Jr, Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197–216 [Google Scholar]
  29. Gorer PA. 1937. The genetic and antigenic basis for tumor transplantation. J. Pathol. Bacteriol. 44:691–97 [Google Scholar]
  30. Snell GD, Lyman S, Gorer PA. 1948. Studies on the genetic and antigenetic basis of tumor transplantation. Linkage between a histocompatibility gene and “fused” in mice. Proc. R. Soc. London Ser. B Biol. Sci. 135:499–505 [Google Scholar]
  31. Nathenson SG, Davies DA. 1966. Solubilization and partial purification of mouse histocompatibility antigens from a membranous lipoprotein fraction. Proc. Natl. Acad. Sci. USA 56:476–83 [Google Scholar]
  32. Sanderson AR, Strominger JL, Nathenson SG. 1962. Chemical structure of teichoic acid from Staphylococcus aureus, strain Copenhagen. J. Biol. Chem. 237:3603–13 [Google Scholar]
  33. Sanderson AR, Batchelor JR. 1968. Transplantation antigens from human spleens. Nature 219:184–86 [Google Scholar]
  34. Turner MJ, Cresswell P, Parham P, Strominger JL, Mann DL, Sanderson AR. 1975. Purification of papain-solubilized histocompatibility antigens from a cultured human lymphoblastoid line, RPMI 4265. J. Biol. Chem. 250:4512–19 [Google Scholar]
  35. Cresswell P, Turner MJ, Strominger JL. 1973. Papain-solubilized HL-A antigens from cultured human lymphocytes contain two peptide fragments. Proc. Natl. Acad. Sci. USA 70:1603–7 [Google Scholar]
  36. Grey HM, Kubo RT, Colon SM, Poulik MD, Cresswell P. et al. 1973. The small subunit of HL-A antigens is beta 2-microglobulin. J. Exp. Med. 138:1608–12 [Google Scholar]
  37. Cresswell P, Springer T, Strominger JL, Turner MJ, Grey HM, Kubo RT. 1974. Immunological identity of the small subunit of HL-A antigens and beta2-microglobulin and its turnover on the cell membrane. Proc. Natl. Acad. Sci. USA 71:2123–27 [Google Scholar]
  38. Springer TA, Strominger JL. 1976. Detergent-soluble HLA antigens contain a hydrophilic region at the COOH-terminus and a penultimate hydrophobic region. Proc. Natl. Acad. Sci. USA 73:2481–85 [Google Scholar]
  39. Orr HT, Lancet D, Robb RJ, Lopez de Castro JA, Strominger JL. 1979. The heavy chain of human histocompatibility antigen HLA-B7 contains an immunoglobulin-like region. Nature 282:266–70 [Google Scholar]
  40. Orr HT, Lopez de Castro JA, Lancet D, Strominger JL. 1979. Complete amino acid sequence of a papain-solubilized human histocompatibility antigen, HLA-B7. 2. Sequence determination and search for homologies. Biochemistry 18:5711–20 [Google Scholar]
  41. Humphreys RE, McCune JM, Chess L, Herrman HC, Malenka DJ. et al. 1976. Isolation and immunologic characterization of a human B-lymphocyte-specific, cell surface antigen. J. Exp. Med. 144:99–112 [Google Scholar]
  42. Kaufman JF, Auffray C, Korman AJ, Shackelford DA, Strominger J. 1984. The class II molecules of the human and murine major histocompatibility complex. Cell 36:1–13 [Google Scholar]
  43. Shackelford DA, Mann DL, van Rood JJ, Ferrara GB, Strominger JL. 1981. Human B-cell alloantigens DC1, MT1, and LB12 are identical to each other but distinct from the HLA-DR antigen. Proc. Natl. Acad. Sci. USA 78:4566–70 [Google Scholar]
  44. Ploegh HL, Orr HT, Strominger JL. 1980. Molecular cloning of a human histocompatibility antigen cDNA fragment. Proc. Natl. Acad. Sci. USA 77:6081–85 [Google Scholar]
  45. Orr HT, Bach FH, Ploegh HL, Strominger JL, Kavathas P, DeMars R. 1982. Use of HLA loss mutants to analyse the structure of the human major histocompatibility complex. Nature 296:454–56 [Google Scholar]
  46. Koller BH, Geraghty DE, DeMars R, Duvick L, Rich SS, Orr HT. 1989. Chromosomal organization of the human major histocompatibility complex class I gene family. J. Exp. Med. 169:469–80 [Google Scholar]
  47. Korman AJ, Knudsen PJ, Kaufman JF, Strominger JL. 1982. cDNA clones for the heavy chain of HLA-DR antigens obtained after immunopurification of polysomes by monoclonal antibody. Proc. Natl. Acad. Sci. USA 79:1844–48 [Google Scholar]
  48. Korman AJ, Auffray C, Schamboeck A, Strominger JL. 1982. The amino acid sequence and gene organization of the heavy chain of the HLA-DR antigen: homology to immunoglobulins. Proc. Natl. Acad. Sci. USA 79:6013–17 [Google Scholar]
  49. Auffray C, Kuo J, DeMars R, Strominger JL. 1983. A minimum of four human class II alpha-chain genes are encoded in the HLA region of chromosome 6. Nature 304:174–77 [Google Scholar]
  50. Roux-Dosseto M, Auffray C, Lillie JW, Boss JM, Cohen D. et al. 1983. Genetic mapping of a human class II antigen beta-chain cDNA clone to the SB region of the HLA complex. Proc. Natl. Acad. Sci. USA 80:6036–40 [Google Scholar]
  51. Steinmetz M, Minard K, Horvath S, McNicholas J, Srelinger J. et al. 1982. A molecular map of the immune response region from the major histocompatibility complex of the mouse. Nature 300:35–42 [Google Scholar]
  52. Okada K, Boss JM, Prentice H, Spies T, Mengler R. et al. 1985. Gene organization of DC and DX subregions of the human major histocompatibility complex. Proc. Natl. Acad. Sci. USA 82:3410–14 [Google Scholar]
  53. Spies T, Sorrentino R, Boss JM, Okada K, Strominger JL. 1985. Structural organization of the DR subregion of the human major histocompatibility complex. Proc. Natl. Acad. Sci. USA 82:5165–69 [Google Scholar]
  54. Spies T, Morton CC, Nedospasov SA, Fiers W, Pious D, Strominger JL. 1986. Genes for the tumor necrosis factors α and β are linked to the human major histocompatibility complex. Proc. Natl. Acad. Sci. USA 83:8699–702 [Google Scholar]
  55. Carroll MC, Katzman P, Alicot EM, Koller BH, Geraghty DE. et al. 1987. Linkage map of the human major histocompatibility complex including the tumor necrosis factor genes. Proc. Natl. Acad. Sci. USA 84:8535–39 [Google Scholar]
  56. Spies T, Blanck G, Bresnahan M, Sands J, Strominger JL. 1989. A new cluster of genes within the human major histocompatibility complex. Science 243:214–17 [Google Scholar]
  57. Bahram S, Spies T. 1996. The MIC gene family. Res. Immunol. 147:328–33 [Google Scholar]
  58. Orr HT, Lopez de Castro JA, Parham P, Ploegh HL, Strominger JL. 1979. Comparison of amino acid sequences of two human histocompatibility antigens, HLA-A2 and HLA-B7: location of putative alloantigenic sites. Proc. Natl. Acad. Sci. USA 76:4395–99 [Google Scholar]
  59. Bjorkman PJ, Strominger JL, Wiley DC. 1985. Crystallization and X-ray diffraction studies on the histocompatibility antigens HLA-A2 and HLA-A28 from human cell membranes. J. Mol. Biol. 186:205–10 [Google Scholar]
  60. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–12 [Google Scholar]
  61. Koller BH, Orr HT. 1985. Cloning and complete sequence of an HLA-A2 gene: analysis of two HLA-A alleles at the nucleotide level. J. Immunol. 134:2727–33 [Google Scholar]
  62. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. 1987. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–18 [Google Scholar]
  63. Garrett TP, Saper MA, Bjorkman PJ, Strominger JL, Wiley DC. 1989. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature 342:692–96 [Google Scholar]
  64. Gorga JC, Madden DR, Prendergast JK, Wiley DC, Strominger JL. 1992. Crystallization and preliminary X-ray diffraction studies of the human major histocompatibility antigen HLA-B27. Proteins 12:87–90 [Google Scholar]
  65. Madden DR, Gorga JC, Strominger JL, Wiley DC. 1992. The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70:1035–48 [Google Scholar]
  66. Silver ML, Guo HC, Strominger JL, Wiley DC. 1992. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 360:367–69 [Google Scholar]
  67. Gorga JC, Horejsi V, Johnson DR, Raghupathy R, Strominger JL. 1987. Purification and characterization of class II histocompatibility antigens from a homozygous human B cell line. J. Biol. Chem. 262:16087–94 [Google Scholar]
  68. Gorga JC, Brown JH, Jardetzky T, Wiley DC, Strominger JL. 1991. Crystallization of HLA-DR antigens. Res. Immunol. 142:401–7 [Google Scholar]
  69. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG. et al. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39 [Google Scholar]
  70. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG. et al. 1994. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368:711–18 [Google Scholar]
  71. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG. et al. 1994. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368:215–21 [Google Scholar]
  72. Chicz RM, Urban RG, Lane WS, Gorga JC, Stern LJ. et al. 1992. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358:764–68 [Google Scholar]
  73. Chicz RM, Urban RG, Gorga JC, Vignali DAA, Lane WS, Strominger JL. 1993. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178:27–47 [Google Scholar]
  74. Strominger JL. 2002. Don Craig Wiley (1944–2001): a reminiscence. Nat. Immunol. 2:103–4 [Google Scholar]
  75. Svejgaard A, Platz P, Ryder LP. 1983. HLA and disease 1982—a survey. Immunol. Rev. 70:193–218 [Google Scholar]
  76. Teitelbaum D, Webb C, Meshorer A, Arnon R, Sela M. 1973. Suppression by several synthetic polypeptides of experimental allergic encephalomyelitis induced in guinea pigs and rabbits with bovine and human basic encephalitogen. Eur. J. Immunol. 3:273–79 [Google Scholar]
  77. Fridkis-Hareli M, Santambrogio L, Stern JN, Fugger L, Brosnan C, Strominger JL. 2002. Novel synthetic amino acid copolymers that inhibit autoantigen-specific T cell responses and suppress experimental autoimmune encephalomyelitis. J. Clin. Invest. 109:1635–43 [Google Scholar]
  78. Stern JN, Illes Z, Reddy J, Keskin DB, Sheu E. et al. 2004. Amelioration of proteolipid protein 139–151-induced encephalomyelitis in SJL mice by modified amino acid copolymers and their mechanisms. Proc. Natl. Acad. Sci. USA 101:11743–48 [Google Scholar]
  79. Illes Z, Stern JN, Reddy J, Waldner H, Mycko MP. et al. 2004. Modified amino acid copolymers suppress myelin basic protein 85–99-induced encephalomyelitis in humanized mice through different effects on T cells. Proc. Natl. Acad. Sci. USA 101:11749–54 [Google Scholar]
  80. Stern JN, Illes Z, Reddy J, Keskin DB, Fridkis-Hareli M. et al. 2005. Peptide 15-mers of defined sequence that substitute for random amino acid copolymers in amelioration of experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 102:1620–25 [Google Scholar]
  81. Ciccone E, Pende D, Viale O, Tambussi G, Ferrini S. et al. 1990. Specific recognition of human CD3-CD16+ natural killer cells requires the expression of an autosomic recessive gene on target cells. J. Exp. Med. 172:47–52 [Google Scholar]
  82. Ciccone E, Colonna M, Viale O, Pende D, Di Donato C. et al. 1990. Susceptibility or resistance to lysis by alloreactive natural killer cells is governed by a gene in the human major histocompatibility complex between BF and HLA-B. Proc. Natl. Acad. Sci. USA 87:9794–97 (and correction in Proc. Natl. Acad. USA 88:5477) [Google Scholar]
  83. Ciccone E, Pende D, Viale O, Di Donato C, Tripodi G. et al. 1992. Evidence of a natural killer (NK) cell repertoire for (allo) antigen recognition: definition of five distinct NK-determined allospecificities in humans. J. Exp. Med. 175:709–18 [Google Scholar]
  84. Colonna M, Spies T, Strominger JL, Ciccone E, Moretta A. et al. 1992. Alloantigen recognition by two human natural killer cell clones is associated with HLA-C or a closely linked gene. Proc. Natl. Acad. Sci. USA 89:7983–85 [Google Scholar]
  85. Colonna M, Borsellino G, Falco M, Ferrara GB, Strominger JL. 1993. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc. Natl. Acad. Sci. USA 90:12000–4 [Google Scholar]
  86. Mandelboim O, Reyburn HT, Vales-Gomez M, Pazmany L, Colonna M. et al. 1996. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J. Exp. Med. 184:913–22 [Google Scholar]
  87. Colonna M, Samaridis J. 1995. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268:405–8 [Google Scholar]
  88. Wagtmann N, Biassoni R, Cantoni C, Verdiani S, Malnati MS. et al. 1995. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2:439–49 [Google Scholar]
  89. Cella M, Longo A, Ferrara GB, Strominger JL, Colonna M. 1994. NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J. Exp. Med. 180:1235–42 [Google Scholar]
  90. D'Andrea A, Chang C, Franz-Bacon K, McClanahan T, Phillips JH, Lanier LL. 1995. Molecular cloning of NKB1. A natural killer cell receptor for HLA-B allotypes. J. Immunol. 155:2306–10 [Google Scholar]
  91. Davis DM, Chiu I, Fassett M, Cohen GB, Mandelboim O, Strominger JL. 1999. The human natural killer cell immune synapse. Proc. Natl. Acad. Sci. USA 96:15062–67 [Google Scholar]
  92. Orange JS, Harris KE, Andzelm MM, Valter MM, Geha RS, Strominger JL. 2003. The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl. Acad. Sci. USA 100:14151–56 [Google Scholar]
  93. Deleted in proof
  94. Orange JS, Fassett MS, Koopman LA, Boyson JE, Strominger JL. 2002. Viral evasion of natural killer cells. Nat. Immunol. 3:1006–12 [Google Scholar]
  95. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS. et al. 2003. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 198:1201–12 [Google Scholar]
  96. Kopcow HD, Allan DS, Ge B, Rybalov B, Andzelm MM. et al. 2005. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc. Natl. Acad. Sci. USA. 43:15563–68 [Google Scholar]
  97. Skare J, Strominger JL. 1980. Cloning and mapping of BamHi endonuclease fragments of DNA from the transforming B95-8 strain of Epstein-Barr virus. Proc. Natl. Acad. Sci. USA 77:3860–64 [Google Scholar]
  98. Schaefer BC, Woisetschlaeger M, Strominger JL, Speck SH. 1991. Exclusive expression of Epstein-Barr virus nuclear antigen 1 in Burkitt lymphoma arises from a third promoter, distinct from the promoters used in latently infected lymphocytes. Proc. Natl. Acad. Sci. USA 88:6550–54 [Google Scholar]
  99. Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. 1984. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. USA 81:4510–14 [Google Scholar]
  100. Hemler ME, Ware CF, Strominger JL. 1983. Characterization of a novel differentiation antigen complex recognize by a monoclonal antibody (A-1A5): unique activation-specific molecular forms on stimulated T cells. J. Immunol. 131:334–40 [Google Scholar]
  101. Brenner MB, McLean J, Dialynas DP, Strominger JL, Smith JA. et al. 1986. Identification of a putative second T-cell receptor. Nature 322:145–49 [Google Scholar]
  102. Spies T, Bresnahan M, Strominger JL. 1989. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B. Proc. Natl. Acad. Sci. USA 86:8955–58 [Google Scholar]
  103. Wong SH, Santambrogio L, Strominger JL. 2004. Caspases and nitric oxide broadly regulate dendritic cell maturation and surface expression of class II MHC proteins. Proc. Natl. Acad. Sci. USA 101:17783–88 [Google Scholar]
  104. Santambrogio L, Potolicchio I, Fessler SP, Wong SH, Raposo G, Strominger JL. 2005. Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells. Nat. Immunol. 6:1020–28 [Google Scholar]
  105. Krensky AM, Clayberger C, Reiss CS, Strominger JL, Burakoff SJ. 1982. Specificity of OKT4+ cytotoxic T lymphocyte clones. J. Immunol. 129:2001–3 [Google Scholar]
  106. Kohler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–97 [Google Scholar]
  107. Herzenberg LA, Herzenberg LA. 2004. Genetics, FACS, immunology, and redox: a tale of two lives intertwined. Annu. Rev. Immunol. 22:1–31 [Google Scholar]
  108. Ploegh HL, Orr HT, Strominger JL. 1981. Major histocompatibility antigens: the human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell 24:287–99 [Google Scholar]
  109. Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL. 1993. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178:27–47 [Google Scholar]
  110. Stern LJ, Wiley DC. 1994. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2:245–51 [Google Scholar]
  111. Madden DR. 1995. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13:587–622 [Google Scholar]
  112. Latron F, Pazmany L, Morrison J, Moots R, Saper MA. et al. 1992. A critical role for conserved residues in the cleft of HLA-A2 in presentation of a nonapeptide to T cells. Science 257:964–67 [Google Scholar]
/content/journals/10.1146/annurev.immunol.24.021605.090703
Loading
/content/journals/10.1146/annurev.immunol.24.021605.090703
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error