Brown adipose tissue is distinguished by its unique capacity for uncoupled mitochondrial respiration, which is highly regulated by sympathetic nerve activity. Because of this, energy expenditure in brown fat is capable of ranging over many orders of magnitude. The fact that the function of brown adipose tissue is impaired in obese rodents and that transgenic mice with decreased brown fat develop obesity demonstrates the importance of brown fat in maintaining nutritional homeostasis. However, the role of brown fat in humans is less clear. β3-Adrenergic receptors are found on brown adipocytes, and treatment with β3-selective agonists markedly increases energy expenditure and decreases obesity in rodents. Whether β3-selective agonists will be effective anti-obesity agents in humans is presently under investigation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Himms-Hagen J. 1989. Brown adipose tissue thermogenesis and obesity.. Prog. Lipid Res. 28:67–115 [Google Scholar]
  2. Nnodim JO, Lever JD. 1988. Neural and vascular provisions of rat interscapular brown adipose tissue.. Am. J. Anat. 182:283–93 [Google Scholar]
  3. Leonard JL, Mellen SA, Larsen PR. 1983. Thyroxine 5′-deiodinase activity in brown adipose tissue.. Endocrinology 112:1153–55 [Google Scholar]
  4. Silava JE, Larsen PR. 1983. Adrenergic activation of triiodotyronine production in brown adipose tissue.. Nature 305:712–13 [Google Scholar]
  5. Néchad M. 1986. Structure and development of brown adipose tissue. In Brown Adipose Tissue, ed. P Trayhurn, DG Nicholls 1–30 London: Arnold [Google Scholar]
  6. Nicholls DG, Locke RM. 1984 . Thermogeneic mechanisms in brown fat.. Physol. Rev. 64:1–64 [Google Scholar]
  7. Bukowiecki LJ, Folléa N, Lupien J, Paradis A. 1981. Metabolic relationships between lipolysis and respiration in rat brown adipocytes.. J. Biol. Chem. 256:12840–48 [Google Scholar]
  8. Locke RM, Rial E, Scott ID, Nicholls DG. 1982. Fatty acids as acute regulators of the proton conductance of hamster brown-fat mitochondria.. Eur. J. Biochem. 129:373–80 [Google Scholar]
  9. Strieleman PJ, Schalinske KL, Shrago E. 1985. Fatty acid activation of the reconstituted brown adipose tissue mitochondria uncoupling protein.. J. Biol. Chem. 260:13402–5 [Google Scholar]
  10. Jezek P, Orosz DE, Modriansky M, Garlid KD. 1994. Transport of anions and protons by the mitochondrial uncoupling protein and its regulation by nucleotides and fatty acids.. A new look at old hypotheses J. Biol. Chem. 269:26184–90 [Google Scholar]
  11. Jezek P, Hanus J, Semrad C, Garlid KD. 1996. Photoactivated azido fatty acid irreversibly inhibits anion and proton transport through the mitochondrial uncoupling protein.. J. Biol. Chem. 271:6199–205 [Google Scholar]
  12. Bouillaud F, Ricquier D, Thibault J, Weissenbach J. 1985. Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein.. Proc. Natl. Acad. Sci. USA 82:445–48 [Google Scholar]
  13. Jacobsson A, Stadler U, Glotzer M, Kozak L. 1985. Mitochondrial uncoupling protein from mouse brown fat.. Molecular cloning, genetic mapping and mRNA expression J. Biol. Chem. 260:16250–54 [Google Scholar]
  14. Ridley RG, Patel HV, Gerber GE. et al. 1986. Complete nucleotide sequence and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of rat brown adipose tissue: lack of mitochondrial targeting pre-sequence.. Nucleic Acids Res. 14:4025–35 [Google Scholar]
  15. Kozak LP, Britton JH, Kozak UC, Wells JM. 1988. The mitochondrial uncoupling protein gene.. Correlation of exon structures to transmembrane domains J. Biol. Chem. 263:1274–77 [Google Scholar]
  16. Bouillaud F, Raimbault S, Ricquier D. 1988. The gene for rat uncoupling protein: complete sequence, structure of primary transcript and evolutionary relationship between exons.. Biochem. Biophys. Res. Commun. 157:783–92 [Google Scholar]
  17. Rehnmark S, Néchad M, Herron D. et al. 1990. α- and β-adrenergic induction of the expression of the uncoupling protein thermogenin in brown adipocytes differentiated in culture.. J. Biol. Chem. 265:16464–71 [Google Scholar]
  18. Ricquier D, Bouillaud F, Toumelin P. et al. 1986. Expression of uncoupling protein mRNA in thermogenic or weakly thermogenic brown adipose tissue.. J. Biol. Chem. 261:13905–10 [Google Scholar]
  19. Bianco AC, Sheng X, Silva JE. 1988. Triiodothyronine amplifies norepinephrine stimulation of uncoupling gene transcription by a mechanism not requiring protein synthesis.. J. Biol. Chem. 263:18168–75 [Google Scholar]
  20. Raasmaja A, Larsen PR. 1989. α1- and β-adrenergic agents cause synergistic stimulation of the iodothyronine deiodinase in rat brown adipocytes.. Endocrinology 125:2502–9 [Google Scholar]
  21. Boyer B, Kozak LP. 1991. The mitochondrial uncoupling protein gene in brown fat: correlation between DNase I hypersensitivity and expression in transgenic mice.. Mol. Cell. Biol. 11:4147–56 [Google Scholar]
  22. Cassard-Doulcier AM, Gelly C, Fox N. et al. 1993. Tissue-specific and β-adrenergic regulation of the mitochondrial uncoupling protein gene: control by cis-acting elements in the 5′-flanking region.. Mol. Endocrinol. 7:497–506 [Google Scholar]
  23. Kozak UC, Kopecky J, Teisinger J. et al. 1994. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene.. Mol. Cell. Biol. 14:59–67 [Google Scholar]
  24. Cassard-Doulcier AM, Larose M, Matamala JC. et al. 1994. In vitro interactions between nuclear proteins and uncoupling protein gene promoter reveal several putative transactivating factors including Ets1, retinoid X receptor, thyroid hormone receptor, and a CACCC box binding protein.. J. Biol. Chem. 269:24335–42 [Google Scholar]
  25. Alvarez R, Andrés J, Yubero P. et al. 1995. A novel regulatory pathway of brown fat thermogenesis.. Retinoic acid is a transcriptional activator of the mitochondrial uncoupling protein gene J. Biol. Chem. 270:5666–73 [Google Scholar]
  26. Himms-Hagen J. 1990. Brown adipose tissue thermogenesis: interdisciplinary studies.. FASEB J. 4:2890–98 [Google Scholar]
  27. Himms-Hagen J, Cui J, Danforth E Jr, et al. 1994. Effect of CL-316,243, a thermogenic β3-agonist, on energy balance and brown and white adipose tissues in rats.. Am. J. Physiol. 266:R1371–82 [Google Scholar]
  28. Rothwell NJ, Stock MJ. 1979. A role for brown adipose tissue in diet induced thermogenesis.. Nature 281:31–35 [Google Scholar]
  29. Arch JRS, Kaumann AJ. 1993. β3- and atypical β-adrenoceptors.. Med. Res. Rev. 13:663–729 [Google Scholar]
  30. Lowell BB, Susulic VS, Hamann A. et al. 1993. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue.. Nature 366:740–42 [Google Scholar]
  31. Hamann A, Benecke H, Le Marchand-Brustel Y. et al. 1995. Characterization of insulin resistance and NIDDM in transgenic mice with reduced brown fat.. Diabetes 44:1266–73 [Google Scholar]
  32. Hamann A, Flier JS, Lowell BB. 1996. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes and hyperlipidemia.. Endocrinology 137:21–29 [Google Scholar]
  33. Cassard A-M, Bouillaud F, Matei MG. et al. 1990. Human uncoupling protein gene: structure, comparison with rat gene, and assignment to the long arm of chromosome 4.. J. Cell. Biochem. 43:255–64 [Google Scholar]
  34. Heaton JM. 1972. The distibution of brown adipose tissue in the human.. J. Anat. 112:35–39 [Google Scholar]
  35. Garruti G, Ricquier D. 1992. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans.. Int. J. Obesity 16:383–90 [Google Scholar]
  36. Krief S, Lönnqvist F, Raimbault S. et al. 1993. Tissue distribution of β3-adrenergic receptor mRNA in man.. J. Clin. Invest. 91:344–49 [Google Scholar]
  37. Ricquier D, Néchad M, Mory G. 1982. Ultrastructural and biochemical characterization of human brown adipose tissue activity in phaeochromocytoma.. J. Clin. Endocrinol. Metab. 54:803–7 [Google Scholar]
  38. Zhang Y, Proenca R, Maffel M. et al. 1994. Positional cloning of the mouse obese gene and its human homologue.. Nature 372:425–32 [Google Scholar]
  39. Considine RV, Considine EL, Williams CJ. et al. 1995. Evidence against either a premature stop codon or the absence of obese gene mRNA in human obesity.. J. Clin. Invest. 95:2986–88 [Google Scholar]
  40. Maffei M, Fei H, Lee G-H. et al. 1995. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus.. Proc. Natl. Acad. Sci. USA 92:6957–60 [Google Scholar]
  41. Funahashi T, Shimomura I, Hiraoka H. et al. 1995. Enhanced expression of rat obese (ob) gene in adipose tissue of ventromedial hypothalamus (VMH)-lesioned rats.. Biochem. Biophys. Res. Commun. 211:469–75 [Google Scholar]
  42. Frederich RC, Löllmann B, Hamann A. et al. 1995. Expression of ob mRNA and its encoded protein in rodents: impact of nutrition and obesity.. J. Clin. Invest. 96:1658–63 [Google Scholar]
  43. Oqawa Y, Masuzaki H, Isse N. et al. 1995. Molecular cloning of rat obese cDNA and augmented gene expression in genetically obese Zucker faty (fa/fa) rats.. J. Clin. Invest. 96:1647–52 [Google Scholar]
  44. Halaas JL, Gajiwala KS, Maffei M. et al. 1995. Weight-reducing effects of the plasma protein encoded by the obese gene.. Science 269:543–46 [Google Scholar]
  45. Pelleymounter MA, Cullen MJ, Baker MB. et al. 1995. Effects of the obese gene product on body weight regulation in ob/ob mice.. Science 269:540–43 [Google Scholar]
  46. Campfield LA, Smith FJ, Guisez Y. et al. 1995. Recombinant mouse ob protein: evidence for a peripheral signal linking adiposity and central neural networks.. Science 269:546–49 [Google Scholar]
  47. Collins S, Kuhn CM, Petro AE. et al. 1996. Role of leptin in fat regulation.. Nature 380:677 [Google Scholar]
  48. Tartaglia LA, Dembski M, Weng X. et al. 1995. Identification and expression cloning of a leptin receptor, OB–R.. Cell 83:1263–71 [Google Scholar]
  49. Chen H, Charlat O, Tartaglia LA. et al. 1996. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice.. Cell 84:491–95 [Google Scholar]
  50. Lee GH, Proenca R, Montez JM. et al. 1996. Abnormal splicing of the leptin receptor in diabetic mice.. Nature 379:632–35 [Google Scholar]
  51. Frederich RC, Hamann A, Anderson S. et al. 1995. Leptin levels reflect lipid content in mice: evidence for diet-induced resistance to leptin action.. Nature Med. 1:1311–14 [Google Scholar]
  52. Granneman JG, Lahners KN, Chaudhry A. 1991. Molecular cloning and expression of the rate β3-adrenergic receptor.. Mol. Pharmacol. 40:895–99 [Google Scholar]
  53. Muzzin P, Revelli JP, Kuhne F. et al. 1991. An adipose tissue specific beta-adrenergic receptor.. J. Biol. Chem. 266:24053–58 [Google Scholar]
  54. Nahmias C, Blin N, Elalouf JM. et al. 1991. Molecular characterization of the mouse β3-adrenergic receptor: relationship with the atypical receptor of adipocytes.. EMBO J. 10:3721–27 [Google Scholar]
  55. Granneman JG, Lahners KN. 1994. Analysis of human and rodent β3-adrenergic receptor messenger ribonucleic acids.. Endocrinology 135:1025–31 [Google Scholar]
  56. Collins S, Daniel KW, Rohlfs EM. et al. 1994. Impaired expression and functional activity of the beta-3 and beta-1 adrenergic receptors in adipose tissue of congentially obese C57BL/6J ob/ob mice.. Mol. Endocrin. 8:518–27 [Google Scholar]
  57. Walston J, Silver K, Bogardus C. et al. 1995. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the β3-adrenergic-receptor gene.. N. Engl. J. Med. 333:343–47 [Google Scholar]
  58. Widén E, Lehto M, Kanninen T. et al. 1995. Association of a polymorphism in the β3-adrenergic receptor gene with features of the insulin resistance syndrome in Finns.. N. Engl. J. Med. 333:348–51 [Google Scholar]
  59. Clément K, Vaisse C, Manning BStJ. et al. 1995. Genetic variation in the β3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity.. N. Engl. J. Med. 333:352–54 [Google Scholar]
  60. Cawthorne MA, Sennitt MV, Arch JRS, Smith SA. 1992. BRL 35135, a potent and selective atypical beta adrenoceptor agonist.. Am. J. Clin. Nutr. 55:252–57S [Google Scholar]
  61. Holloway BR, Howe R, Rao BS, Stribling D. 1992. ICI D7114: a novel selective adrenoceptor agonist of brown fat and thermogenesis.. Am. J. Clin. Nutr. 55:262–64S [Google Scholar]
  62. Bloom JD, Dutia MD, Johnson BD. et al. 1992. CL 316,243, a potent beta adrenergic agonist virtually specific for beta-3 receptors. A promising antidiabeteic and antiobesity agent.. J. Med. Chem. 35:3081–84 [Google Scholar]
  63. Pietri-Rouxel F, Strosberg AD. 1995. Pharmacological characteristics and species-related variations of beta-3 adrenergic receptors.. Fundam. Clin. Pharmacol. 9:211–18 [Google Scholar]
  64. Himms-Hagen J, Danforth E Jr. 1996. The potential role of β3-adrenoceptor agonists in the treatment of obesity and diabetes.. Curr. Opin. Endocrin. Diabetes 3:59–65 [Google Scholar]
  65. Susulic VS, Frederich RC, Lawitts J. et al. 1995. Targeted disruption of the beta-3 adrenergic receptor gene.. J. Biol. Chem. 270:29483–92 [Google Scholar]
  66. Mantzoros CS, Qu D, Frederich RC. et al. 1996. Activation of β3-adrenergic receptors suppresses leptin expression and mediates a leptin-independent inhibition of food intake in mice.. Diabetes 45:909–14 [Google Scholar]
  67. Ito M, Grujic D, Susulic VS. et al. 1996. Generation of mice expressing human but not murine β3-adrenergic receptors.. In 10th Int. Congr. Endocrinol. (Abstr
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error