Recent evidence suggests that ethanol abuse produces its diverse effects on the brain to a substantial degree by disrupting the function of the major excitatory neurotransmitter, glutamate. Ethanol, at concentrations associated with behavioral effects in humans, inhibits the N-methyl--aspartate (NMDA) receptor, which mediates the post-synaptic excitatory effects of glutamate. Tolerance to ethanol results in up-regulation of the NMDA receptor so that abrupt withdrawal produces a hyperexcitable state that leads to seizures, delerium tremens, and excitotoxic neuronal death. Ethanol's inhibition of the NMDA receptor in the fetal brain likely contributes to the CNS manifestations of fetal alcohol syndrome. Therapeutic strategies aimed at correcting glutamatergic dysregulation in alcoholism need to be explored.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error