In the 1830s, iron bacteria were among the first groups of microbes to be recognized for carrying out a fundamental geological process, namely the oxidation of iron. Due to lingering questions about their metabolism, coupled with difficulties in culturing important community members, studies of Fe-oxidizing bacteria (FeOB) have lagged behind those of other important microbial lithotrophic metabolisms. Recently, research on lithotrophic, oxygen-dependent FeOB that grow at circumneutral pH has accelerated. This work is driven by several factors including the recognition by both microbiologists and geoscientists of the role FeOB play in the biogeochemistry of iron and other elements. The isolation of new strains of obligate FeOB allowed a better understanding of their physiology and phylogeny and the realization that FeOB are abundant at certain deep-sea hydrothermal vents. These ancient microorganisms offer new opportunities to learn about fundamental biological processes that can be of practical importance.

[Erratum, Closure]

An erratum has been published for this article:
Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective

Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error