1932

There is no abstract available.

Keyword(s): Autobiography
Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.51.1.1
1997-10-01
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/51/1/annurev.micro.51.1.1.html?itemId=/content/journals/10.1146/annurev.micro.51.1.1&mimeType=html&fmt=ahah

Literature Cited

  1. Barker HA, Hungate RE. 1990. Cornelius Bernardus van Niel 1897–1985.. Natl. Acad. Sci. Biogr. Mem. 59:389–423 [Google Scholar]
  2. Bazylinski DA, Frankel RB, Jannasch HW. 1988. Anaerobic magnetite production by a marine magnetotactic bacterium.. Nature 334:518–19 [Google Scholar]
  3. Bazylinski DA, Wirsen CO, Jannasch HW. 1989. Microbial utilization of naturally-occurring hydrocarbons at the Guaymas Basin hydrothermal vent site.. Appl. Environ. Microbiol. 55:2832–36 [Google Scholar]
  4. Beling A, Jannasch HW. 1955. Hydrobiologische Untersuchungen der Fulda unter Anwendung der Membranfiltermethode.. Hydrobiologia 7:36–51 [Google Scholar]
  5. Belkin S, Jannasch HW. 1985. A new extremely thermophilic, sulfur-reducing heterotrophic marine bacterium.. Arch. Microbiol. 141:181–86 [Google Scholar]
  6. Belkin S, Nelson DC, Jannasch HW. 1986. Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull.. 170110–21
  7. Belkin S, Wirsen CO, Jannasch HW. 1986. A new sulfur-reducing, extremely thermophilic eubacterium from a submarine hydrothermal vent.. Appl. Environ. Microbiol. 51:1180–85 [Google Scholar]
  8. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C.. Extremophiles 1:14–21 [Google Scholar]
  9. Broeker WS. 1980. Modelling the carbon system.. Radiocarbon 22:565–98 [Google Scholar]
  10. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD. et al. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii.. Science 273:1058–72 [Google Scholar]
  11. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO. 1990. Archaeoglobus profundus sp. nov., represents a new species within the sulfate reducing archaebacteria.. Syst. Appl. Microbiol. 13:24–28 [Google Scholar]
  12. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB. 1981. Procaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts.. Science 213:340–41 [Google Scholar]
  13. Ceram CW. 1970. The March of Archaeology,64 New York: Knopf. 326 pp [Google Scholar]
  14. Cuhel RL, Taylor CD, Jannasch HW. 1981. Assimilatory sulfur metabolism in marine microorganisms: characteristics and regulation of sulfate transport in Pseudomonas halodurans and Alteromonas luteo-violaceus.. J. Bacteriol. 147:340–49 [Google Scholar]
  15. Cuhel RL, Taylor CD, Jannasch HW. 1981. Assimilatory sulfur metabolism in marine microorganisms: a novel sulfate transport system in Alteromonas luteo-violaceus.. J. Bacteriol. 147:350–53 [Google Scholar]
  16. Daie J. 1996. The activist scientist.. Science 272:1081 [Google Scholar]
  17. DeLong EF. 1992. Novel archaea in coastal marine environments.. Proc. Natl. Acad. Sci. USA 89:5685–89 [Google Scholar]
  18. Distel DL, Felbeck H, Cavanaugh CM. 1994. Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalve hosts.. J. Mol. Evol. 38:533–42 [Google Scholar]
  19. Eberhard C, Wirsen CO, Jannasch HW. 1995. Oxidation of polymetal sulfides by chemolitho-autotrophic bacteria from deep-sea hydrothermal vents.. Geomicrobiol. J. 13:145–64 [Google Scholar]
  20. Ehrenreich A, Widdel F. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic meta-bo-lism.. Appl. Environ. Microbiol. 60:4517–26 [Google Scholar]
  21. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J. 1986. Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C.. Syst. Appl. Microbiol. 8:106–13 [Google Scholar]
  22. Fossink H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP. et al. 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca.. Nature 374:713–15 [Google Scholar]
  23. Goetz FE, Jannasch HW. 1993. Aromatic hydrocarbon degrading bacteria in the petroleum-rich sediments of the Guaymas Basin hydrothermal vent site.. Geomicrobiol. J. 11:1–18 [Google Scholar]
  24. Gorini L. 1960. Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme.. Proc. Natl. Acad. Sci. USA 46:682–90 [Google Scholar]
  25. Groeben C. 1984. The Naples Zoological Station and Woods Hole.. Oceanus 27:60–69 [Google Scholar]
  26. Gunderson J, Jørgensen BB, Larsen E, Jannasch HW. 1992. Mats of giant sulfur bacteria in deep-sea sediments due to fluctuating hydrothermal flow.. Nature 360:454–56 [Google Scholar]
  27. Herbert D, Elsworth R, Telling RC. 1956. The continuous culture of bacteria: a theoretical and experimental study.. J. Gen. Microbiol. 14:601–22 [Google Scholar]
  28. Heuss T. 1962. Anton Dohrn. Tübingen: Wunderlich Verlag.. 448 pp.
  29. Hobbie JE, Daley RJ, Jasper S. 1977. Use of nucleopore filters for counting bacteria by epifluorescence microscopy.. Appl. Environ. Microbiol. 33:1225–28 [Google Scholar]
  30. Holland HD, Smith GI, Jannasch HW, Dickson AG, Mianping Z, Tiping D. 1991. Lake Zabuye and the climatic history of the Tibetan Plateau.. Geowissenschaften 9:37–44 [Google Scholar]
  31. Huber R, Kurr M, Jannasch HW, Stetter KO. 1989. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C.. Nature 342:833–34 [Google Scholar]
  32. Huber R, Langworthy TA, König H, Thomm M, Woese CR. et al. 1986. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C.. Arch. Microbiol. 144:324–33 [Google Scholar]
  33. Hungate RE. 1986. Obituary: C. B. van Niel, 1897–1985.. Photosynth. Res. 10:139–42 [Google Scholar]
  34. Hungate RE, Jannasch HW, Wolfe RS. 1985. Obituary: Cornelius Bernard van Niel. ASM News. 51424–25
  35. Hutchinson GE. 1965. The Ecological Theater and the Evolutionary Play. New Haven: Yale Univ. Press [Google Scholar]
  36. Jannasch HW. 1955. Zur Ökologie der zymogenen planktischen Bakterienflora natürlicher Gewässer.. Arch. Mikrobiol. 23:146–80 [Google Scholar]
  37. Jannasch HW. 1957. Die bakterielle Rotfärbung der Salzseen des Wadi Natrun (Ägypten).. Arch. Hydrobiol. 53:425–33 [Google Scholar]
  38. Jannasch HW. 1960. Denitrification as influenced by photosynthetic oxygen production.. J. Gen. Microbiol. 23:55–63 [Google Scholar]
  39. Jannasch HW. 1963. Bacterial growth at low substrate concentrations.. Arch. Mikrobiol. 45:323–42 [Google Scholar]
  40. Jannasch HW. 1965. Starter populations as determined under steady state conditions.. Biotechnol. Bioeng. 7:279–83 [Google Scholar]
  41. Jannasch HW. 1967. Enrichments of aquatic bacteria in continuous culture.. Arch. Mikrobiol. 59:165–73 [Google Scholar]
  42. Jannasch HW. 1967. Growth of marine bacteria at limiting concentrations of organic carbon in seawater.. Limnol. Oceanogr. 12:264–71 [Google Scholar]
  43. Jannasch HW. 1968. Competitive elimination of Enterobacteriaceae from seawater.. Appl. Microbiol. 16:1616–18 [Google Scholar]
  44. Jannasch HW. 1968. Growth characteristics of heterotrophic bacteria in seawater.. J. Bacteriol. 95:722–23 [Google Scholar]
  45. Jannasch HW. 1969. Current concepts of aquatic microbiology. Baldi Memorial Lecture.. Verh. Int. Ver. Limnol. 17:25–39 [Google Scholar]
  46. Jannasch HW. 1969. Estimations of bacterial growth rates in natural waters.. J. Bacteriol. 99:156–60 [Google Scholar]
  47. Jannasch HW. 1971. Threshold concentrations of carbon sources limiting bacterial growth in seawater. In Organic Matter in Natural Waters, ed. DW Hood 321–28 New York: Pergamon [Google Scholar]
  48. Jannasch HW. 1974. Steady state and the chemostat in ecology.. Limnol. Oceanogr. 19:717–20 [Google Scholar]
  49. Jannasch HW. 1975. Methane oxidation in Lake Kivu (Central Africa).. Limnol. Oceanogr. 20:861–64 [Google Scholar]
  50. Jannasch HW. 1977. Growth kinetics of aquatic bacteria. In Aquatic Microbiology, SAB Symp. Ser. 6, ed. JM Shewan, FA Skinner 55–68 London: Academic [Google Scholar]
  51. Jannasch HW. 1979. Microbial ecology of aquatic low-nutrient habitats. In Strategy of Life in Extreme Environments, ed. M Shilo 243–60 Weinheim: Verlag Chemie. 513 pp [Google Scholar]
  52. Jannasch HW. 1984. Aspects of measuring bacterial activities in the deep ocean. In Heterotrophic Activity in the Sea, ed. J Hobbie, PL Williams 505–22 New York: Plenum [Google Scholar]
  53. Jannasch HW. 1984. Microbial processes at deep sea hydrothermal vents. In Hydrothermal Processes at Sea Floor Spreading Centers, ed. PA Rona, K Bostrom, L Laubier, KL Smith 677–709 New York: Plenum [Google Scholar]
  54. Jannasch HW. 1985. The chemosynthetic support of life and the microbial diversity at deep sea hydrothermal vents.. Proc. R. Soc. London Ser. B 225:277–97 [Google Scholar]
  55. Jannasch HW. 1989. Litho-auto-trophically sustained ecosystems in the deep sea. In Biology of Autotrophic Bacteria, ed. HG Schlegel, B Bowien 147–66 Berlin: Springer-Verlag [Google Scholar]
  56. Jannasch HW. 1995. Microbial interactions with hydrothermal fluids.. In Seafloor Hydrothermal Systems, ed. SE Humphris, RA Zierenberg, LS Mullineaux, RE Thomson Geophys. Monogr. 91273–96 Washington, DC: Am. Geophys. Union. Publ [Google Scholar]
  57. Jannasch HW, Egli T. 1993. Microbial growth kinetics: a historical perspective.. Antonie van Leeuwenhoek 63:213–24 [Google Scholar]
  58. Jannasch HW, Eimhjellen K, Wirsen CO, Farmanfarmaian A. 1971. Microbial degradation of organic matter in the deep-sea.. Science 171:672–75 [Google Scholar]
  59. Jannasch HW, Huber R, Belkin S, Stetter KO. 1988. Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga.. Arch. Microbiol. 150:103–4 [Google Scholar]
  60. Jannasch HW, Jones GE. 1959. Bacterial populations in seawater as determined by different methods of enumeration.. Limnol. Oceanogr. 4:128–39 [Google Scholar]
  61. Jannasch HW, Mateles RI. 1974. Experimental bacterial ecology studies in continuous culture.. Adv. Microbiol. Physiol. 11:165–212 [Google Scholar]
  62. Jannasch HW, Mottl MJ. 1985. Geo-microbiology of deep sea hydrothermal vents.. Science 229:717–25 [Google Scholar]
  63. Jannasch HW, Nelson DC, Wirsen CO. 1989. Massive natural occurrence of unusual large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site.. Nature 342:834–36 [Google Scholar]
  64. Jannasch HW, Wirsen CO. 1977. Retrieval of concentrated and undecompressed microbial populations from the deep sea.. Appl. Environ. Microbiol. 33:642–46 [Google Scholar]
  65. Jannasch HW, Wirsen CO. 1979. Chemosynthetic primary production at East Pacific Ocean floor spreading centers.. BioScience 29:492–98 [Google Scholar]
  66. Jannasch HW, Wirsen CO. 1981. Morphological survey of microbial mats near deep sea thermal vents.. Appl. Environ. Microbiol. 41:528–38 [Google Scholar]
  67. Jannasch HW, Wirsen CO. 1982. Microbial activities in undecompressed and decompressed deep sea water samples.. Appl. Environ. Microbiol. 43:1116–24 [Google Scholar]
  68. Jannasch HW, Wirsen CO. 1984. Variability of pressure adaptation in deep sea bacteria.. Arch. Microbiol. 139:281–88 [Google Scholar]
  69. Jannasch HW, Wirsen CO, Doherty KM. 1996. A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria.. Appl. Environ. Microbiol. 62:1593–96 [Google Scholar]
  70. Jannasch HW, Wirsen CO, Molyneaux SJ. 1991. Chemoautotrophic sulfur-oxidizing bacteria from the Black Sea.. Deep-Sea Res. 38:1105–20 [Google Scholar]
  71. Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA. 1988. Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents.. Appl. Environ. Microbiol. 54:1203–9 [Google Scholar]
  72. Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA. 1992. Comparative physiological studies on hyperthermophilic archaea isolated from deep sea hydrothermal vents with emphasis on Pyrococcus Strain GB-D.. Appl. Environ. Microbiol. 58:3472–81 [Google Scholar]
  73. Jannasch HW, Wirsen CO, Nelson DC, Robertson LA. 1985. Thiomicrospira crunogena sp. nov., a colourless sulphur oxidizing bacterium from a deep sea hydrothermal vent.. Int. J. Syst. Bacteriol. 35:422–24 [Google Scholar]
  74. Jannasch HW, Wirsen CO, Taylor CD. 1976. Undecompressed microbial populations from the deep sea.. Appl. Environ. Microbiol. 32:360–67 [Google Scholar]
  75. Jannasch HW, Wirsen CO, Taylor CD. 1982. Deep sea bacteria: isolation in the absence of decompression.. Science 216:1315–17 [Google Scholar]
  76. Jannasch HW, Wirsen CO, Winget CL. 1973. A bacteriological, pressure-retaining, deep-sea sampler and culture vessel.. Deep-Sea Res. 20:661–64 [Google Scholar]
  77. Jones WJ, Leigh JA, Meyer F, Woese CR, Wolfe RS. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent.. Arch. Microbiol. 136:254–61 [Google Scholar]
  78. Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW. 1991. Sulfide oxidation in the anoxic Black Sea chemocline.. Deep-Sea Res. 38:1083–103 [Google Scholar]
  79. Karl DM. 1986. Determination of in situ microbial biomass, viability, metabolism and growth. In Bacteria in Nature, ed. JS Poindexter, ER Leadbetter 85–176 New York: Plenum [Google Scholar]
  80. Kotre J. 1995. White Gloves: How To Create Ourselves Through Memory. New York: Free Press 276 pp. [Google Scholar]
  81. Kurr M, Huber R, König H, Jannasch HW, Fricke H. et al. 1991. Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens growing at 110°C.. Arch. Microbiol. 156:239–47 [Google Scholar]
  82. Leigh JA, Mayer F, Wolfe RS. 1981. Acetogenium kivui, a new thermophilic hydrogen-oxidizing acetogenic bacterium.. Arch. Microbiol. 129:275–80 [Google Scholar]
  83. McHatton S, Barry J, Jannasch HW, Nelson DC. 1996. Vacuolar nitrate accumulation in autotrophic marine Beggiatoa.. Appl. Environ. Microbiol. 62:954–58 [Google Scholar]
  84. Miertsching JA. 1967. Frozen Ships: The Arctic Diary of Johann Miertsching, 1850–1854. Transl. LH Neatby. Toronto: Macmillan of Can.. 254 pp.
  85. Mitchell R, Jannasch HW. 1969. Processes controlling virus inactivation in seawater.. Environ. Sci. Technol. 3:941–43 [Google Scholar]
  86. Mitchell RS, Yankovsky S, Jannasch HW. 1967. Lysis of Escherichia coli by marine microorganisms.. Nature 215:891–93 [Google Scholar]
  87. Monod J. 1950. La technique de culture continue; theorie et applications.. Ann. Inst. Pasteur 79:390–410 [Google Scholar]
  88. Murray JW, Jannasch HW, Honjo S, Reeburgh WS, Friederich GE. et al. 1989. Unexpected changes in the oxic/anoxic interface in the Black Sea.. Nature 338:411–41 [Google Scholar]
  89. Muyzer G, Teske AP, Wirsen CO, Jannasch HW. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturating gradient gel electrophoresis of 16S rDNA fragments.. Arch. Microbiol. 164:165–72 [Google Scholar]
  90. Nelson DC, Jannasch HW. 1983. Chemoautotrophic growth of a marine Beggiatoa in sulfide gradient cultures.. Arch. Microbiol. 136:262–69 [Google Scholar]
  91. Nelson DC, Waterbury JB, Jannasch HW. 1983. Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa.. Arch. Microbiol. 133:l72–77 [Google Scholar]
  92. Nelson DC, Wirsen CO, Jannasch HW. 1989. Characterization of large autotrophic Beggiatoa at hydrothermal vents of the Guaymas Basin.. Appl. Environ. Microbiol. 55:2909–17 [Google Scholar]
  93. Neuner A, Jannasch HW, Belkin S, Stetter KO. 1990. Thermococcus litoralis sp. nov.: a novel species of extremely thermophilic marine archaebacteria.. Arch. Microbiol. 153:205–7 [Google Scholar]
  94. Novick A, Szilard L. 1950. Description of the chemostat.. Science 112:715–16 [Google Scholar]
  95. Odintsova EV, Jannasch HW, Mamone JA, Langworthy TA. 1996. Thermothrix azorensis, nov. spec., a thermophilic, obligate lithoautotrophic, sulfur oxidizing bacterium.. Int. J. Syst. Bacteriol. 46:422–28 [Google Scholar]
  96. Overmann J, Cypionka H, Pfennig N. 1992. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea.. Limnol. Oceanogr. 37:150–55 [Google Scholar]
  97. Pace N. 1996. New perspective on the natural microbial world: molecular microbial ecology.. ASM News 62:463–70 [Google Scholar]
  98. Pace NR, Stahl DH, Lane DJ, Olsen GJ. 1986. The use of rRNA sequences to characterize natural microbial populations.. Adv. Microb. Ecol. 9:1–55 [Google Scholar]
  99. Pfeffer W. 1897. Pflanzenphysiologie. Leipzig: Engelmann-Verlag. 2nd ed..
  100. Pfennig N. 1987. Van Niel remembered.. ASM News 53:75–77 [Google Scholar]
  101. Pfennig N. 1993. Reflections of a microbiologist, or how to learn from the microbes.. Annu. Rev. Microbiol. 47:1–29 [Google Scholar]
  102. Pfennig N, Jannasch HW. 1962. Biologische Grundfragen bei der kontinuierlichen Kultur von Mikroorganismen.. Ergeb. Biol. 25:93–135 [Google Scholar]
  103. Pley Y, Schipka J, Gambacorta A, Jannasch HW, Fricke H. et al. 1991. Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C.. Syst. Appl. Microbiol. 14:255–63 [Google Scholar]
  104. Repeta DJ, Simpson DJ, Jørgensen BB, Jannasch HW. 1989. The distribution of bacterio-chlorophylls in the Black Sea: evidence for anaerobic photosynthesis.. Nature 342:69–72 [Google Scholar]
  105. Roy R. 1989. ‘Soft cheating’ is more harmful to science than cases of outright fraud.. Scientist 3:14 [Google Scholar]
  106. Ruby EG, Jannasch HW. 1982. Physiological characteristics of Thiomicrospira sp. isolated from deep sea hydrothermal vents.. J. Bacteriol. 149:161–65 [Google Scholar]
  107. Ruby EG, Jannasch HW, Deuser WG. 1987. Fractionation of stable carbon isotopes during chemoautotrophic growth of sulfur oxidizing bacteria.. Appl. Environ. Microbiol. 53:1940–43 [Google Scholar]
  108. Ruby EG, Wirsen CO, Jannasch HW. 1981. Chemolithotrophic sulfur-oxidiz-ing bacteria from the Galapagos Rift hydrothermal vents.. Appl. Environ. Microbiol. 42:317–42 [Google Scholar]
  109. Rueter P, Rabus R, Wilkes H, Aekersberg F, Rainey F. et al. 1994. Anaerobic oxidation of hydrocarbons from crude oil by new types of sulfate-reducing bacteria.. Nature 372:455–58 [Google Scholar]
  110. Russell HL. 1892 . Untersuchungen über im Golf von Neapel lebende Bakterien.. Z. Hyg. 11:165–206 [Google Scholar]
  111. Russell HL. 1893. The bacterial flora of the Atlantic Ocean in the vicinity of Woods Hole.. Bot. Gaz. 18:383–95 [Google Scholar]
  112. Schlegel HG, Jannasch HW. 1967. Enrichment cultures.. Annu. Rev. Microbiol. 21:49–70 [Google Scholar]
  113. Schlegel HG, Jannasch HW. 1991. Prokaryotes and their habitats. In The Prokaryotes, ed. A Balows, HG Trüper, M Dworkin, W Harder, KH Schleifer 75–125 Berlin: Springer-Verlag. 2nd ed [Google Scholar]
  114. Strugger S. 1949. Fluorenzmikroskopie und Mikrobiologie. Hannover: Verlag-Schaper.. 149 pp.
  115. Svetlichny VA, Sokolova TG, Gerhardt M, Kostrikina NA, Zavarzin G. 1991. Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherm of Kuril Islands.. Microbiol. Ecol. 21:1–10 [Google Scholar]
  116. Taylor CD. 1979. Growth of a bacterium under a high pressure oxy-helium atmosphere.. Appl. Environ. Microbiol. 37:42–49 [Google Scholar]
  117. Taylor CD. 1987. Solubility properties of oxygen and helium in hyperbaric systems and the influence of high pressure oxygen-helium upon bacterial growth, metabolism and viability. In Current Perspectives in High Pressure Biology, ed. HW Jannasch, RE Marquis, AM Zimmerman 111–28 London: Academic [Google Scholar]
  118. Trüper HG, Jannasch HW. 1968. Chromatium buderi nov. spec., eine neue Art der “grossen” Thiorhodaceae.. Arch. Mikrobiol. 61:363–72 [Google Scholar]
  119. Trüper HG, Kelleher JJ, Jannasch HW. 1969. Isolation and characterization of sulfate reducing bacteria from various marine environments.. Arch. Mikrobiol. 65:208–l7 [Google Scholar]
  120. Tuttle JH, Jannasch HW. 1973. Sulfide and thiosulfate oxidizing bacteria in anoxic marine basins.. Mar. Biol. 20:64–70 [Google Scholar]
  121. Tuttle JH, Jannasch HW. 1973. Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria.. J. Bacteriol. 115:732–37 [Google Scholar]
  122. Tuttle JH, Jannasch HW. 1979. Microbial dark assimilation of CO2 in the Cariaco Trench.. Limnol. Oceanogr. 24:746–53 [Google Scholar]
  123. Tuttle JH, Wirsen CO, Jannasch HW. 1983. Microbial activities in emitted hydrothermal waters of the Galapagos Rift vents.. Mar. Biol. 73:293–99 [Google Scholar]
  124. Van Gemerden H, Jannasch HW. 1971. Continuous culture of Thiorhodaceae: sulfide and sulfur limited growth of Chromatium vinosum.. Arch. Microbiol. 79:345–53 [Google Scholar]
  125. Van Niel CB. 1967. The education of a microbiologist: some reflections.. Annu. Rev. Microbiol. 21:1–30 [Google Scholar]
  126. Van Niel CB. 1949. The kinetics of growth of microorganisms. In The Chemistry and Physiology of Growth, ed. AK Parpart 91–105 Princeton, NJ: Princeton Univ. Press [Google Scholar]
  127. Veldkamp H, Jannasch HW. 1972. Mixed culture studies with the chemostat.. J. Appl. Chem. Biotechnol. 22:105–22 [Google Scholar]
  128. von Weitzsäcker CF. 1948. Die Ge-s-ch-i-chte der Natur. Göttingen: Van-de-n-ho-eck & Rupprecht.. 138 pp.
  129. Ward DM, Bateson MM, Weller R, Ruff-Roberts AL. 1992. Ribosomal RNA analysis of microorganisms as they occur in nature.. Adv. Microbiol. Ecol. 12:219–86 [Google Scholar]
  130. Wirsen CO, Jannasch HW. 1975. Activity of marine psychrophilic bacteria at elevated hydrostatic pressures and low temperatures.. Mar. Biol. 31:201–8 [Google Scholar]
  131. Wirsen CO, Jannasch HW. 1976. The decomposition of solid organic materials in the deep-sea.. Environ. Sci. Technol. 10:880–87 [Google Scholar]
  132. Wirsen CO, Jannasch HW. 1978. Physiological and morphological observations of Thiovulum sp.. J. Bacteriol. 136:765–74 [Google Scholar]
  133. Wirsen CO, Jannasch HW, Molyneaux SJ. 1993. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites.. J. Geophys. Res. 98:9693–703 [Google Scholar]
  134. Wirsen CO, Jannasch HW, Wakeham SG, Canuel EA. 1987. Membrane lipids of a psychrophilic and barophilic deep sea bacterium.. Curr. Microbiol. 14:319–22 [Google Scholar]
  135. Woese CR, Kandler O, Wheelis ML. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya.. Proc. Natl. Acad. Sci. USA 87:4576–79 [Google Scholar]
  136. Wolfe RS. 1991. My kind of biology.. Annu. Rev. Microbiol. 45:1–35 [Google Scholar]
  137. Yayanos AA, Dietz AS, van Boxtel R. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics.. Science 205:808–10 [Google Scholar]
/content/journals/10.1146/annurev.micro.51.1.1
Loading
/content/journals/10.1146/annurev.micro.51.1.1
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error