Segregation of DNA in bacterial cells is an efficient process that assures that every daughter cell receives a copy of genomic and plasmid DNA. In this review, we focus primarily on observations in recent years, including the visualization of DNA and proteins at the subcellular level, that have begun to define the events that separate DNA molecules. Unlike the process of chromosome segregation in higher cells, segregation of the bacterial chromosome is a continuous process in which chromosomes are separated as they are replicated. Essential to separation is the initial movement of sister origins to opposite ends of the cell. Subsequent replication and controlled condensation of DNA are the driving forces that move sister chromosomes toward their respective origins, which establishes the polarity required for segregation. Final steps in the resolution and separation of sister chromosomes occur at the replication terminus, which is localized at the cell center.

In contrast to the chromosome, segregation of low-copy plasmids, such as F, P1, and R1, is by mechanisms that resemble those used in eukaryotic cells. Each plasmid has a centromere-like site to which plasmid-specified partition proteins bind to promote segregation. Replication of plasmid DNA, which occurs at the cell center, is followed by rapid partition protein-mediated separation of sister plasmids, which become localized at distinct sites on either side of the division plane.

The fundamental similarity between chromosome and plasmid segregation—placement of DNA to specific cell sites—implies an underlying cellular architecture to which both DNA and proteins refer.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error