Most descriptions of evolution assume that all mutations are completely random with respect to their potential effects on survival. However, much like other phenotypic variations that affect the survival of the descendants, intrinsic variations in the probability, type, and location of genetic change can feel the pressure of natural selection. From site-specific recombination to changes in polymerase fidelity and repair of DNA damage, an organism's gene products affect what genetic changes occur in its genome. Through the action of natural selection on these gene products, potentially favorable mutations can become more probable than random. With examples from variation in bacterial surface proteins to the vertebrate immune response, it is clear that a great deal of genetic change is better than “random” with respect to its potential effect on survival. Indeed, some potentially useful mutations are so probable that they can be viewed as being encoded implicitly in the genome. An updated evolutionary theory includes emergence, under selective pressure, of genomic information that affects the probability of different classes of mutation, with consequences for genome survival.


Article metrics loading...

Loading full text...

Full text loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error