1932

Abstract

▪ Abstract 

The natural production and anthropogenic release of halogenated hydrocarbons into the environment has been the likely driving force for the evolution of an unexpectedly high microbial capacity to dehalogenate different classes of xenobiotic haloorganics. This contribution provides an update on the current knowledge on metabolic and phylogenetic diversity of anaerobic microorganisms that are capable of dehalogenating—or completely mineralizing—halogenated hydrocarbons by fermentative, oxidative, or reductive pathways. In particular, research of the past decade has focused on halorespiring anaerobes, which couple the dehalogenation by dedicated enzyme systems to the generation of energy by electron transport–driven phosphorylation. Significant advances in the biochemistry and molecular genetics of degradation pathways have revealed mechanistic and structural similarities between dehalogenating enzymes from phylogenetically distinct anaerobes. The availability of two almost complete genome sequences of halorespiring isolates recently enabled comparative and functional genomics approaches, setting the stage for the further exploitation of halorespiring and other anaerobic dehalogenating microbes as dedicated degraders in biological remediation processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.58.030603.123600
2004-10-13
2024-06-19
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.micro.58.030603.123600
Loading
/content/journals/10.1146/annurev.micro.58.030603.123600
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error