1932

Abstract

My professional life has been devoted to the study of microbial products and their biosynthesis, regulation, and overproduction. These have included primary metabolites (glutamic acid, tryptophan, inosinic acid, guanylic acid, vitamin B, riboflavin, pantothenic acid, ethanol, and lactic acid) and secondary metabolites (penicillin, cephalosporins, streptomycin, fosfomycin, gramicidin S, rapamycin, indolmycin, microcin B17, fumagillin, mycotoxins, pigments, and tetramethylpyrazine). Other areas included microbial nutrition, strain improvement, bioconversions of statins and β-lactams, sporulation and germination, plasmid stability, gel microdroplets, and the production of double-stranded RNA, the polymer xanthan, and enzymes (polygalacturonase, protease, cellulase). Most of the studies were carried out with me by devoted and hardworking industrial scientists for 15 years at Merck & Co. and by similarly characterized students, postdoctorals, and visiting scientists during my 32 years at the Massachusetts Institute of Technology. I owe much of my success to my mentors from academia and industry. My recent research activities with undergraduate students at the Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.) at Drew University have been very rewarding and are allowing me to continue my career.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.58.030603.123757
2004-10-13
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/mi/58/1/annurev.micro.58.030603.123757.html?itemId=/content/journals/10.1146/annurev.micro.58.030603.123757&mimeType=html&fmt=ahah

Literature Cited

  1. Adelberg EA. 1998. The right place at the right time. Annu. Rev. Microbiol. 52:1–40 [Google Scholar]
  2. Adrio JL, Cho H, Piret JM, Demain AL. 1999. Inactivation of deacetoxycephalosporin C synthase in extracts of Streptomyces clavuligerus during bioconversion of penicillin G to deacetoxycephalosporin G. Enzyme Microb. Technol. 25:497–501 [Google Scholar]
  3. Adrio JL, Demain AL. 2002. Improvements in the formation of cephalosporins from penicillin G to other penicillins by bioconversion. Org. Proc. Res. Dev. 6:427–33 [Google Scholar]
  4. Adrio JL, Hintermann GA, Demain AL, Piret JM. 2002. Construction of hybrid bacterial deacetoxycephalosporin C synthases (expandases) by in vivo homeologous recombination. Enzyme Microb. Technol. 31:932–40 [Google Scholar]
  5. Aharonowitz Y, Demain AL. 1978. Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob. Agents Chemother. 14:159–64 [Google Scholar]
  6. Banko G, Demain AL, Wolfe S. 1987. δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACV synthetase): a multifunctional enzyme with broad substrate specificity for the synthesis of penicillin and cephalosporin precursors. J. Am. Chem. Soc. 109:2858–60 [Google Scholar]
  7. Barker HA. 1978. Explorations of bacterial metabolism. Annu. Rev. Biochem. 47:1–33 [Google Scholar]
  8. Batchelor FR, Doyle FP, Nayler JHC, Rolinson GN. 1959. Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations. Nature 183:257–58 [Google Scholar]
  9. Birnbaum J, Demain AL. 1969. Conversion of citrate to extracellular glutamate by penicillin-treated resting cells of Corynebacterium glutamicum. Agric. Biol. Chem. 33:1169–73 [Google Scholar]
  10. Bull AT, Demain AL, Freedman RB, Hazlewood GP. 1994. Marek Romaniec: inspiration to young researchers. SIM News 44:190 [Google Scholar]
  11. Cho H, Adrio JL, Luengo JM, Wolfe S, Ocran S. et al. 1998. Elucidation of conditions allowing conversion of penicillin G and other penicillins to deacetoxycephalosporins by resting cells and extracts of Streptomyces clavuligerus NP1. Proc. Natl. Acad. Sci. USA 95:11544–48 [Google Scholar]
  12. Cundliffe E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43:207–33 [Google Scholar]
  13. Demain AL. 1957. Inhibition of penicillin formation by lysine. Arch. Biochem. Biophys. 67:244–46 [Google Scholar]
  14. Demain AL. 1959. The mechanism of penicillin biosynthesis. Adv. Appl. Microbiol. 1:23–47 [Google Scholar]
  15. Demain AL. 1999. In memorium: Louis Kaplan. SIM News 49:236 [Google Scholar]
  16. Demain AL. 2000. Edward P. Abraham, cell-free systems and the fungal biosynthesis of beta-lactams. J. Antibiot. 53:995–1002 [Google Scholar]
  17. Demain AL, Burg RW, Hendlin D. 1965. Excretion and degradation of ribonucleic acid by Bacillus subtilis. J. Bacteriol. 89:640–46 [Google Scholar]
  18. Demain AL, Fang A. 2001. Secondary metabolism in simulated gravity. Chem. Rec. 1:333–46 [Google Scholar]
  19. Demain AL, Herscowitz HB, Pearson GR. 1994. Dr. Edward Katz. J. Antibiot. 47:1075–76 [Google Scholar]
  20. Demain AL, Inamine E. 1970. Biochemistry and regulation of streptomycin and mannosidostreptomycinase (α-d-mannosidase) formation. Bacteriol. Rev. 34:1–19 [Google Scholar]
  21. Demain , Jackson M, Vitali RA, Hendlin D, Jacob TA. 1966. Production of guanosine-5′-monophosphate and inosine-5′-monophosphate by fermentation. Appl. Microbiol. 14:821–25 [Google Scholar]
  22. Demain AL, Masurekar PS. 1974. Lysine inhibition of in vivo homocitrate synthesis in Penicillium chrysogenum. J. Gen. Microbiol. 82:143–51 [Google Scholar]
  23. Demain AL, Newkirk JF, Hendlin D. 1963. Effect of methionine, norleucine, and lysine derivatives on cephalosporin C formation in chemically-defined media. J. Bacteriol. 85:339–44 [Google Scholar]
  24. Demain AL, Phaff HJ. 1954. Composition and action of yeast polygalacturonase. Nature 174:515–16 [Google Scholar]
  25. Demain AL, White RF. 1971. Porphyrin overproduction by Pseudomonas denitrificans: essentiality of betaine and stimulation by ethionine. J. Bacteriol. 107:456–60 [Google Scholar]
  26. Drew SW, Demain AL. 1975. Stimulation of cephalosporin production by methionine peptides in a mutant blocked in reverse transsulfuration. J. Antibiot. 28:889–95 [Google Scholar]
  27. Etchells JL, Bell TA, Monroe RJ, Masley PM, Demain AL. 1958. Populations and softening enzyme activity of filamentous fungi on flowers, ovaries, and fruit of pickling cucumbers. Appl. Microbiol. 6:427–40 [Google Scholar]
  28. Gao Q, Demain AL. 2001. Improvement in the bioconversion of penicillin G to deacetoxycephalosporin G by elimination of agitation and addition of decane. Appl. Microbiol. Biotechnol. 57:511–13 [Google Scholar]
  29. Gao Q, Piret JM, Adrio JL, Demain AL. 2003. Performance of a recombinant strain of Streptomyces lividans for bioconversion of penicillin G to deacetoxycephalosporin G. J. Ind. Microbiol. Biotechnol. 30:190–94 [Google Scholar]
  30. Gerngross UT, Romaniec MPM, Kobayashi T, Huskisson NS, Demain AL. 1993. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8:325–34 [Google Scholar]
  31. Guarneri JJ, Demain AL. 1996. Michael A. Pisano. ASM News 62:375 [Google Scholar]
  32. Hilton MD, Alaeddinoglu NG, Demain AL. 1988. Bacillus subtilis mutant deficient in its ability to produce the dipeptide antibiotic bacilysin: isolation and mapping of the mutation. J. Bacteriol. 170:1018–20 [Google Scholar]
  33. Hollander IJ, Shen Y-Q, Heim J, Demain AL, Wolfe S. 1984. A pure enzyme catalyzing penicillin biosynthesis. Science 224:610–12 [Google Scholar]
  34. Hook DJ, Chang LT, Elander RP, Morin RB. 1979. Stimulation of the conversion of penicillin N to cephalosporin by ascorbic acid, α-ketoglutarate, and ferrous ions in cell-free extracts of strains of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 87:258–65 [Google Scholar]
  35. Johnson EA, Bouchot F, Demain AL. 1985. Regulation of cellulase formation in Clostridium thermocellum. J. Gen. Microbiol. 131:2303–8 [Google Scholar]
  36. Kaplan L, Demain AL. 1970. Nutritional studies on riboflavin overproduction by Ashbya gossypii. In Recent Trends in Yeast Research ed. DG Ahearn pp.137–58 Atlanta: Georgia State Univ. Press [Google Scholar]
  37. Katz E, Demain AL. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41:449–74 [Google Scholar]
  38. Kleupfel D, Sehgal S, Demain A. 1996. Claude Vezina, former Ayerst Research Director and co-discoverer of rapamycin. SIM News 46:35 [Google Scholar]
  39. Kohsaka M, Demain AL. 1976. Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 70:465–73 [Google Scholar]
  40. Konomi T, Herchen S, Baldwin JE, Yoshida M, Hunt NA, Demain AL. 1979. Cell-free conversion of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine into an antibiotic with the properties of isopenicillin N in Cephalosporium acremonium. Biochem. J. 184:427–30 [Google Scholar]
  41. Kruus K, Lua AC, Demain AL, Wu JHD. 1995. The anchorage function of CipA (CelL), a scaffolding protein of the Clostridium thermocellum cellulosome. Proc. Natl. Acad. Sci. USA 92:9254–58 [Google Scholar]
  42. Lago BD, Birnbaum J, Demain AL. 1972. Fermentation process for double-stranded ribonucleic acid, an interferon inducer. Appl. Microbiol. 24:430–36 [Google Scholar]
  43. Lederberg J. 1987. Genetic recombination in bacteria: a discovery account. Annu. Rev. Genet. 21:23–46 [Google Scholar]
  44. Lin TF, Demain AL. 1994. Leucine interference in the production of water-soluble red Monascus pigments. Arch. Microbiol. 162:114–19 [Google Scholar]
  45. Lin WR, Peng Y, Lew S, Lee CC, Hsu JJ, Hamel J-F, Demain AL. 1998. Purification and characterization of acetate kinase from Clostridium thermocellum. Tetrahedron 54:15915–25 [Google Scholar]
  46. Magasanik B. 1994. A charmed life. Annu. Rev. Microbiol. 48:1–24 [Google Scholar]
  47. Martín JF, Liras P, Demain AL. 1978. ATP and adenylate energy charge during phosphate-mediated control of antibiotic synthesis. Biochem. Biophys. Res. Commun. 83:822–28 [Google Scholar]
  48. Mrak EM. 1957. The world I lived in. Food Technol. 11:541–52 [Google Scholar]
  49. Nagaoka K, Demain AL. 1975. Mutational biosynthesis of a new antibiotic, streptomutin A, by an idiotroph of Streptomyces griseus. J. Antibiot. 28:627–35 [Google Scholar]
  50. Newton GGF, Abraham EP. 1955. Cephalosporin C, a new antibiotic containing sulfur and d-α-aminoadipic acid. Nature 175:548 [Google Scholar]
  51. Nochur SV, Roberts MF, Demain AL. 1990. Mutation of Clostridium thermocellum in the presence of certain carbon sources. FEMS Microbiol. Lett. 71:199–204 [Google Scholar]
  52. O'Sullivan J, Bleaney RC, Huddleston JA, Abraham EP. 1979. Incorporation of 3H from δ-(l-α-amino-[4,5-3H]adipyl)-l-cysteinyl-d-[4,4-3H] valine into isopenicillin N. Biochem. J. 184:421–26 [Google Scholar]
  53. Paiva NL, Demain AL, Roberts MF. 1991. Incorporation of acetate, propionate, and methionine into rapamycin by Streptomyces hygroscopicus. J. Nat. Prod. 54:167–77 [Google Scholar]
  54. Pardee AB. 2002. Regulation, restriction, and reminiscences. J. Biol. Chem. 277:26709–16 [Google Scholar]
  55. Parr GL. 1985. Scientist of the year: Ronald E. Cape. Res. Dev. 27:(10)111–12 [Google Scholar]
  56. Peng Y, Demain AL. 2000. Bioconversion of compactin to pravastatin by Actinomadura sp. ATCC 55678. J. Mol. Catal. B Enzym. 10:151–56 [Google Scholar]
  57. Phaff HJ. 1986. My life with yeasts. Annu. Rev. Microbiol. 40:1–28 [Google Scholar]
  58. Piret JM, Demain AL. 1982. Germination initiation and outgrowth of spores of Bacillus brevis strain Nagano and its gramicidin S-negative mutant. Arch. Microbiol. 133:38–43 [Google Scholar]
  59. Poirier A, Demain AL. 1981. Arginine regulation of gramicidin S biosynthesis. Antimicrob. Agents Chemother. 20:508–14 [Google Scholar]
  60. Ratledge C, Brown D, Demain A, Vanek Z, Ziffer J. 1996. John Desmond Bu'Lock. Biotechnol. Lett. 18:615–20 [Google Scholar]
  61. Rius N, Maeda K, Demain AL. 1996. Induction of l-lysine ϵ-aminotransferase by l-lysine in Streptomyces clavuligerus, producer of cephalosporins. FEMS Microbiol. Lett. 144:207–11 [Google Scholar]
  62. Shier WT, Rinehart KL Jr, Gottlieb D. 1969. Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc. Natl. Acad. Sci. USA 63:198–204 [Google Scholar]
  63. Shoham Y, Demain AL. 1990. Stabilization of a plasmid-encoded LacZ phenotype in Bacillus subtilis. Curr. Microbiol. 20:373–79 [Google Scholar]
  64. Somerson NL, Demain AL, Nunheimer TD. 1961. Reversal of lysine inhibition of penicillin production by α-aminoadipic acid. Arch. Biochem. Biophys. 93:238–41 [Google Scholar]
  65. Stanier RY. 1980. The journey, not the arrival, matters. Annu. Rev. Microbiol. 34:1–48 [Google Scholar]
  66. Stark AA, Kobbe B, Matsuo K, Wogan GN, Demain AL. 1978. Mollicellins: mutagenic and antibacterial mycotoxins. Appl. Environ. Microbiol. 36:412–20 [Google Scholar]
  67. Waksman SA. 1964. Autobiographic sketch. Persp. Biol. Med. 7:377–98 [Google Scholar]
  68. White RF, Birnbaum J, Meyer RT, ten Broeke J, Chemerda JM, Demain AL. 1971. Microbial epoxidation of cis-propenylphosphonic to (-)-cis-1,2-epoxypropylphosphonic acid. Appl. Microbiol. 22:55–60 [Google Scholar]
  69. Williams GB, Weaver JC, Demain AL. 1990. Rapid microbial detection and enumeration using gel microdroplets and colorimetric or fluorescence indicator systems. J. Clin. Microbiol. 28:1002–8 [Google Scholar]
  70. Wolfe S, Demain AL, Jensen SE, Westlake DWS. 1984. Enzymatic approach to synthesis of unnatural beta-lactams. Science 226:1386–92 [Google Scholar]
  71. Woodruff HB. 1981. A soil microbiologist's odyssey. Annu. Rev. Microbiol. 35:1–28 [Google Scholar]
  72. Wu JHD, Orme-Johnson WH, Demain AL. 1988. Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27:1703–9 [Google Scholar]
  73. Yagisawa M, Hotta K. 1991. Biotechnology: past, present and future: Arnold L. Demain. Cell Sci. 7:38–46 [Google Scholar]
  74. Yang W, Kim W-S, Fang A, Demain AL. 2003. Carbon and nitrogen source nutrition of fumagillin biosynthesis by Aspergillus fumigatus. Curr. Microbiol. 46:275–79 [Google Scholar]
  75. Yoshida M, Konomi T, Kohsaka M, Baldwin JE, Herchen S. et al. 1978. Cell-free ring expansion of penicillin N to deacetoxycephalosporin C by Cephalosporium acremonium CW-19 and its mutants. Proc. Natl. Acad. Sci. USA 75:6253–57 [Google Scholar]
  76. Yu H, Serpe E, Romero J, Coque J-J, Maeda K. et al. 1994. Possible involvement of the lysine ϵ-aminotransferase gene (lat) in the expression of the genes encoding ACV synthetase (pcbAB) and isopenicillin N synthase (pcbC) in Streptomyces clavuligerus. Microbiology 140:3367–77 [Google Scholar]
/content/journals/10.1146/annurev.micro.58.030603.123757
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error