Full text loading...
Abstract
A type III secretion system (TTSS) is encoded on a virulence plasmid that is common to three pathogenic Yersinia species: Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. Pathogenic Yersinia species require this TTSS to survive and replicate within lymphoid tissues of their animal or human hosts. A set of pathogenicity factors, including those known as Yersinia outer proteins (Yops), is exported by this system upon bacterial infection of host cells. Two translocator Yops (YopB and YopD) insert into the host plasma membrane and function to transport six effector Yops (YopO, YopH, YopM, YopT, YopJ, and YopE) into the cytosol of the host cell. Effector Yops function to counteract multiple signaling responses in the infected host cell. The signaling responses counteracted by Yops are initiated by phagocytic receptors, Toll-like receptors, translocator Yops, and additional mechanisms. Innate and adaptive immune responses are thwarted as a consequence of Yop activities. A biochemical function for each effector Yop has been established, and the importance of these proteins for the pathogenesis process is being elucidated. This review focuses on the biochemical functions of Yops, the signaling pathways they modulate, and the role of these proteins in Yersinia virulence.