Infection by different coronaviruses (CoVs) causes alterations in the transcriptional and translational patterns, cell cycle, cytoskeleton, and apoptosis pathways of the host cells. In addition, CoV infection may cause inflammation, alter immune and stress responses, and modify the coagulation pathways. The balance between the up- and downregulated genes could explain the pathogenesis caused by these viruses. We review specific aspects of CoV-host interactions. CoV genome replication takes place in the cytoplasm in a membrane-protected microenvironment and may control the cell machinery by locating some of their proteins in the host cell nucleus. CoVs initiate translation by cap-dependent and cap-independent mechanisms. CoV transcription involves a discontinuous RNA synthesis (template switching) during the extension of a negative copy of the subgenomic mRNAs. The requirement for base-pairing during transcription has been formally demonstrated in arteriviruses and CoVs. CoV N proteins have RNA chaperone activity that may help initiate template switching. Both viral and cellular proteins are required for replication and transcription, and the role of selected proteins is addressed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Almazan F, Galan C, Enjuanes L. 2004. The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 78:12683–88Describes the relevance of N protein in CoV replication and transcription. [Google Scholar]
  2. Alonso S, Izeta A, Sola I, Enjuanes L. 2002. Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J. Virol. 76:1293–308 [Google Scholar]
  3. An S, Chen CJ, Yu X, Leibowitz JL, Makino S. 1999. Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J. Virol. 73:7853–59 [Google Scholar]
  4. Banerjee S, An S, Zhou A, Silverman RH, Makino S. 2000. RNase L-independent specific 28S rRNA cleavage in murine coronavirus-infected cells. J. Virol. 74:8793–2 [Google Scholar]
  5. Banerjee S, Narayanan K, Mizutani T, Makino S. 2002. Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells. J. Virol. 76:5937–48 [Google Scholar]
  6. Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. 2005. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332:498–510 [Google Scholar]
  7. Barber GN. 2001. Host defense, viruses and apoptosis. Cell Death Differ 8:113–26 [Google Scholar]
  8. Baric RS, Nelson GW, Fleming JO, Deans RJ, Keck JG. et al. 1988. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J. Virol. 62:4280–87 [Google Scholar]
  9. Benedict CA, Norris PS, Ware CF. 2002. To kill or be killed: viral evasion of apoptosis. Nat. Immunol 3:1013–18 [Google Scholar]
  10. Bertrand EL, Rossi JJ. 1994. Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-1 and the heterogeneous nuclear ribonucleoprotein A1. EMBO J. 13:2904–12 [Google Scholar]
  11. Bost AG, Prentice E, Denison MR. 2001. Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285:21–29 [Google Scholar]
  12. Bredenbeek PJ, Pachuk CJ, Noten AFH, Charite J, Luytjes W. et al. 1990. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 18:1825–32 [Google Scholar]
  13. Brierly I, Boursnell MEG, Binns MM, Bilimoria B, Blok VC. et al. 1987. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 6:3779–85 [Google Scholar]
  14. Britton P. 1991. Coronavirus motif. Nature 353:394 [Google Scholar]
  15. Brockway SM, Clay CT, Lu XT, Denison MR. 2003. Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J. Virol. 77:10515–27 [Google Scholar]
  16. Cai Y, Liu Y, Yu D, Zhang X. 2003. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection. Virology 316:104–15 [Google Scholar]
  17. Calvo E, Escors D, Lopez JA, Gonzalez JM, Alvarez A. et al. 2005. Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. J. Gen. Virol. 86:2255–67 [Google Scholar]
  18. Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P. 2001. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J. Virol. 75:12359–69 [Google Scholar]
  19. Chau TN, Lee KC, Yao H, Tsang TY, Chow TC. et al. 2004. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology 39:302–10 [Google Scholar]
  20. Chen CJ, Makino S. 2004. Murine coronavirus replication induces cell cycle arrest in G0G1 phase. J. Virol. 78:5658–69 [Google Scholar]
  21. Chen CJ, Sugiyama K, Kubo H, Huang C, Makino S. 2004. Murine coronavirus nonstructural protein p28 arrests cell cycle in G0G1 phase. J. Virol. 78:10410–19 [Google Scholar]
  22. Chen H, Gill A, Dove BK, Emmett SR, Kemp CF. et al. 2005. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J. Virol. 79:1164–79 [Google Scholar]
  23. Chen H, Wurm T, Britton P, Brooks G, Hiscox JA. 2002. Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J. Virol. 76:5233–50 [Google Scholar]
  24. Choi KS, Huang P, Lai MM. 2002. Polypyrimidine-tract-binding protein affects transcription but not translation of mouse hepatitis virus RNA. Virology 303:58–68 [Google Scholar]
  25. Cinati J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. 2003. Treatment of SARS with human interferons. Lancet 362:293–94 [Google Scholar]
  26. Cinatl JJ, Hoever G, Morgenstern B, Preiser W, Vogel JU. et al. 2004. Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus. Cell. Mol. Life. Sci. 61:2100–12 [Google Scholar]
  27. Compton SR, Rogers DB, Holmes KV, Fertsch D, Remenick J, Mc. Gowan JJ. 1987. In vitro replication of mouse hepatitis virus strain A59. J. Virol. 69:2313–21 [Google Scholar]
  28. Cristofari G, Darlix JL. 2002. The ubiquitous nature of RNA chaperone proteins. Prog. Nucleic Acid Res. Mol. Biol. 72:223–68 [Google Scholar]
  29. Cristofari G, Ivanyi-Nagy R, Gabus C, Boulant S, Lavergne JP. et al. 2004. The hepatitis C virus core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucleic Acids Res. 32:2623–31 [Google Scholar]
  30. Cui W, Fan Y, Wu W, Zhang F, Wang JY, Ni AP. 2003. Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 37:857–59 [Google Scholar]
  31. Dinarello CA, Fantuzzi G. 2003. Interleukin-18 and host defense against infection. J. Infect. Dis. 187:S370–84 [Google Scholar]
  32. Ding JW, Ning Q, Liu MF, Lai A, Phillips MJ. et al. 1998. Expression of the FGL-2 gene and its protein product (prothrombinase) in tissues during murine hepatitis virus strain 3 (MHV-3) infection. Adv. Exp. Med. Biol. 440:609–18 [Google Scholar]
  33. Ding Y, Wang H, Shen H, Li Z, Geng J. et al. 2003. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol. 200:282–89 [Google Scholar]
  34. Dos Ramos F, Carrasco M, Doyle T, Brierley I. 2004. Programmed -1 ribosomal frameshifting in the SARS coronavirus. Biochem. Soc. Trans 32:1081–83 [Google Scholar]
  35. Edgil D, Harris E. 2005. End-to-end communication in the modulation of translation by mammalian RNA viruses. Virus Res. doi:10.1016/j.virusres.2005.10.012
  36. Egloff MP, Ferron F, Campanacci V, Longhi S, Rancurel C. et al. 2004. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA 101:3792–96 [Google Scholar]
  37. Eleouet JF, Chilmonczyk S, Besnardeau L, Laude H. 1998. Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway. J. Virol. 72:4918–24 [Google Scholar]
  38. Escors D, Camafeita E, Ortego J, Laude H, Enjuanes L. 2001. Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J. Virol. 75:12228–40 [Google Scholar]
  39. Fischer F, Peng D, Hingley ST, Weiss SR, Masters PS. 1997. The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J. Virol. 71:996–1003 [Google Scholar]
  40. Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM. et al. 2003. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Human Pathol. 34:743–48 [Google Scholar]
  41. Gingras AC, Raught B, Sonenberg N. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913–63 [Google Scholar]
  42. Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC. 2002. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J. Virol. 76:3697–708 [Google Scholar]
  43. Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF. et al. 2004. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med. 10:290–93 [Google Scholar]
  44. He R, Dobie F, Ballantine M, Leeson A, Li Y. et al. 2004. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 316:476–83 [Google Scholar]
  45. He R, Leeson A, Andonov A, Li Y, Bastien N. et al. 2003. Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 311:870–76 [Google Scholar]
  46. He R, Leeson A, Ballantine M, Andonov A, Baker L. et al. 2004. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 105:121–25 [Google Scholar]
  47. Herold J, Raabe T, Schelle-Prinz B, Siddell SG. 1993. Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology 195:680–91 [Google Scholar]
  48. Herschlag D. 1995. RNA chaperones and the RNA folding problem. J. Biol. Chem. 270:20871–74 [Google Scholar]
  49. Hiscox JA. 2002. The nucleolus: a gateway to viral infection. Arch. Virol 147:1077–89 [Google Scholar]
  50. Hiscox JA, Wurm T, Wilson L, Britton P, Cavanagh D, Brooks G. 2001. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol. 75:506–12 [Google Scholar]
  51. Hogan RJ, Gao G, Rowe T, Bell P, Flieder D. et al. 2004. Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J. Virol. 78:11416–21 [Google Scholar]
  52. Holt J, Sgro JY, Zuker M, Palmenberg A. 2004. Computer folding of full-length viral genomes: a new toolkit for automated analysis of RNAs longer than 10,000 bases. Seventh Int. Symp Positive Strand RNA Viruses. San Francisco, Calif.:
  53. Huang P, Lai MMC. 1999. Polypyrimidine tract-binding protein binds to the complementary strand of the mouse hepatitis virus 3′ untranslated region, thereby altering RNA conformation. J. Virol. 73:9110–16 [Google Scholar]
  54. Huang P, Lai MMC. 2001. Heterogeneous nuclear ribonucleoprotein A1 binds to the 3′-untranslated region and mediates potential 5′-3′-end cross talks of mouse hepatitis virus RNA. J. Virol. 75:5009–17 [Google Scholar]
  55. Huang ZS, Su WH, Wang JL, Wu HN. 2003. Selective strand annealing and selective strand exchange promoted by the N-terminal domain of hepatitis delta antigen. J. Biol. Chem. 278:5685–93 [Google Scholar]
  56. Huang ZS, Wu HN. 1998. Identification and characterization of the RNA chaperone activity of hepatitis delta antigen peptides. J. Biol. Chem. 273:26455–61 [Google Scholar]
  57. Hurst KR, Kuo L, Koetzner CA, Ye R, Hsue B, Masters PS. 2005. A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J. Virol. 79:13285–97 [Google Scholar]
  58. Ivanov KA, Hertzig T, Rozanov M, Bayer S, Thiel V. et al. 2004. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. USA 101:12694–99Confirms bioinformatic predictions on the presence of an RNA enzymatic activity present in all nidovirus genomes. [Google Scholar]
  59. Ivanyi-Nagy R, Davidovic L, Khandjian EW, Darlix JL. 2005. Disordered RNA chaperone proteins: from functions to disease. Cell. Mol. Life. Sci. 62:1409–17 [Google Scholar]
  60. Kim Y, Jeong Y, Makino S. 1993. Analysis of cis-acting sequences essential for coronavirus defective interfering RNA replication. Virology 197:53–63 [Google Scholar]
  61. Kim YN, Makino S. 1995. Characterization of a murine coronavirus defective interfering RNA internal cis-acting replication signal. J. Virol. 69:4963–71 [Google Scholar]
  62. Kyuwa S, Cohen M, Nelson G, Tahara SM, Stohlman SA. 1994. Modulation of cellular macromolecular synthesis by coronavirus: implication for pathogenesis. J. Virol. 68:6815–19 [Google Scholar]
  63. Lai MMC. 1998. Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12 [Google Scholar]
  64. Lai MMC, Cavanagh D. 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48:1–100 [Google Scholar]
  65. Lassnig C, Sanchez CM, Egerbacher M, Walter I, Majer S. et al. 2005. Development of a transgenic mouse model susceptible to human coronavirus 229E. Proc. Natl. Acad. Sci. USA 102:8275–80 [Google Scholar]
  66. Laude H, Masters PS. 1995. The coronavirus nucleocapsid protein. In The Coronaviridae ed. SG Siddell pp. 141–58 New York: Plenum [Google Scholar]
  67. Leibowitz JL, Perlman S, Weinstck G, DeVries JR, Budzilowicz C. et al. 1988. Detection of a murine coronavirus nonstructural protein encoded in a downstream open reading frame. Virology 164:156–64 [Google Scholar]
  68. Leong WF, Tan HC, Ooi EE, Koh DR, Chow VT. 2005. Microarray and real-time RT-PCR analyses of differential human gene expression patterns induced by severe acute respiratory syndrome (SARS) coronavirus infection of Vero cells. Microbes Infect 7:248–59 [Google Scholar]
  69. Leung WK, To KF, Chan PK, Chan HL, Wu AK. et al. 2003. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125:1011–17 [Google Scholar]
  70. Li HP, Huang P, Park S, Lai MMC. 1999. Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription. J. Virol. 73:772–77 [Google Scholar]
  71. Li HP, Zhang X, Duncan R, Comai L, Lai MMC. 1997. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc. Natl. Acad. Sci. USA 94:9544–49 [Google Scholar]
  72. Li Y, Fu L, Gonzales DM, Lavi E. 2004. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. J. Virol. 78:3398–406 [Google Scholar]
  73. Lin YJ, Lai MMC. 1993. Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontinuous sequence for replication. J. Virol. 67:6110–18 [Google Scholar]
  74. Lin YJ, Liao CL, Lai MMC. 1994. Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. J. Virol. 68:8131–40 [Google Scholar]
  75. Lin YJ, Zhang X, Wu RC, Lai MMC. 1996. The 3′ untranslated region of coronavirus RNA is required for subgenomic mRNA transcription from a defective interfering RNA. J. Virol. 70:7236–40 [Google Scholar]
  76. Liu DX, Cavanagh D, Green P, Inglis C. 1991. A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology 184:531–44 [Google Scholar]
  77. Liu DX, Inglis SC. 1992. Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus. J. Virol. 66:6143–54 [Google Scholar]
  78. Loutfy MR, Blatt LM, Siminovitch KA, Ward S, Wolff B. et al. 2003. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA 290:3222–28 [Google Scholar]
  79. Maaser C, Eckmann L, Paesold G, Kim HS, Kagnoff MF. 2002. Ubiquitous production of macrophage migration inhibitory factor by human gastric and intestinal epithelium. Gastroenterology 122:667–80 [Google Scholar]
  80. Mizutani T, Fukushi S, Murakami M, Hirano T, Saijo M. et al. 2004. Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells. FEBS Lett. 577:187–92 [Google Scholar]
  81. Mizutani T, Fukushi S, Saijo M, Kurane I, Morikawa S. 2004. Importance of Akt signaling pathway for apoptosis in SARS-CoV-infected Vero E6 cells. Virology 327:169–74 [Google Scholar]
  82. Mizutani T, Fukushi S, Saijo M, Kurane I, Morikawa S. 2004. Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochem. Biophys. Res. Commun 319:1228–34 [Google Scholar]
  83. Mohandas DV, Dales S. 1991. Endosomal association of a protein phosphatase with high dephosphorylating activity against a coronavirus nucleocapsid protein. FEBS Lett. 282:419–24 [Google Scholar]
  84. Molenkamp R, van Tol H, Rozier BC, van der Meer Y, Spaan WJ, Snijder EJ. 2000. The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J. Gen. Virol. 81:2491–96 [Google Scholar]
  85. Nelson GW, Stohlman SA, Tahara SM. 2000. High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J. Gen. Virol. 81:181–88 [Google Scholar]
  86. Ng LF, Hibberd ML, Ooi EE, Tang KF, Neo SY. et al. 2004. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection. BMC Infect. Dis. 4:34 [Google Scholar]
  87. O'Connor JB, Brian DA. 2000. Downstream ribosomal entry for translation of coronavirus TGEV gene 3b. Virology 269:172–82 [Google Scholar]
  88. Otero LJ, Ashe MP, Sachs AB. 1999. The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. EMBO J. 18:3153–63 [Google Scholar]
  89. Ozdarendeli A, Ku S, Rochat S, Senanayake SD, Brian DA. 2001. Downstream sequences influence the choice between a naturally occurring noncanonical and closely positioned upstream canonical heptameric fusion motif during bovine coronavirus subgenomic mRNA synthesis. J. Virol. 75:7362–74 [Google Scholar]
  90. Parker MM, Masters PS. 1990. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology 179:463–68 [Google Scholar]
  91. Parra B, Hinton DR, Marten NW, Bergmann CC, Lin MT. et al. 1999. IFN-gamma is required for viral clearance from central nervous system oligodendroglia. J. Immunol. 162:1641–47 [Google Scholar]
  92. Pasternak AO, van den Born E, Spaan WJM, Snijder EJ. 2001. Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J. 20:7220–28Describes the role of the transcription-regulating sequences in arterivirus transcription. [Google Scholar]
  93. Pedersen KW, van der Meer Y, Roos N, Snijder EJ. 1999. Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J. Virol. 73:2016–26 [Google Scholar]
  94. Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR. 2004. Coronavirus replication complex formation utilizes components of cellular autophagy. J. Biol. Chem. 279:10136–41 [Google Scholar]
  95. Rempel JD, Murray SJ, Meisner J, Buchmeier MJ. 2004. Differential regulation of innate and adaptive immune responses in viral encephalitis. Virology 318:381–92 [Google Scholar]
  96. Risco C, Muntión M, Enjuanes L, Carrascosa JL. 1998. Two types of virus-related particles are found during transmissible gastroenteritis virus morphogenesis. J. Virol. 72:4022–31 [Google Scholar]
  97. Roulston A, Marcellus RC, Branton PE. 1999. Viruses and apoptosis. Annu. Rev. Microbiol. 53:577–628 [Google Scholar]
  98. Rowland RR, Kervin R, Kuckleburg C, Sperlich A, Benfield DA. 1999. The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res. 64:1–12 [Google Scholar]
  99. Sachs AB, Sarnow P, Hentze MW. 1997. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–38 [Google Scholar]
  100. Sawicki SG, Sawicki DL. 1998. A new model for coronavirus transcription. Adv. Exp. Med. Biol. 440:215–19 [Google Scholar]
  101. Schelle B, Karl N, Ludewig B, Siddell SG, Thiel V. 2005. Selective replication of coronavirus genomes that express nucleocapsid protein. J. Virol. 79:6620–30 [Google Scholar]
  102. Schroeder R, Barta A, Semrad K. 2004. Strategies for RNA folding and assembly. Nat. Rev. Mol. Cell. Biol. 5:908–19 [Google Scholar]
  103. Senanayake SD, Brian DA. 1997. Bovine coronavirus I protein synthesis follows ribosomal scanning on the bicistronic N mRNA. Virus Res. 48:101–5 [Google Scholar]
  104. Senanayake SD, Brian DA. 1999. Translation from the 5′ untranslated region (UTR) of mRNA 1 is repressed, but that from the 5′ UTR of mRNA 7 is stimulated in coronavirus-infected cells. J. Virol. 73:8003–9 [Google Scholar]
  105. Senanayake SD, Hofmann MA, Maki JL, Brian DA. 1992. The nucleocapsid protein gene of bovine coronavirus is bicistronic. J. Virol. 66:5277–83 [Google Scholar]
  106. Sgro JY, Holt J, Zuker M, Palmenberg A. 2004. RNA folding of the complete SARS and MHV coronavirus genomes. Seventh Int. Symp. Positive Strand RNA Viruses. San Francisco, California:
  107. Shi ST, Huang P, Li HP, Lai MMC. 2000. Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus. EMBO J. 19:4701–11 [Google Scholar]
  108. Shi ST, Schiller JJ, Kanjanahaluethai A, Baker SC, Oh JW, Lai MMC. 1999. Colocalization and membrane association of murine hepatitis virus gene 1 products and de novo-synthesized viral RNA in infected cells. J. Virol. 73:5957–69 [Google Scholar]
  109. Siddell SG, Sawicki D, Meyer Y, Thiel V, Sawicki S. 2001. Identification of the mutations responsible for the phenotype of three MHV RNA-negative ts mutants. Adv. Exp. Med. Biol. 494:453–58 [Google Scholar]
  110. Snijder EJ. 2005. The challenging complexity of nidovirus RNA synthesis. In The Nidovirus: Towards Control of SARS and Other Nidovirus Diseases ed. K Holmes, P Stanley New York: Kluwer Acad./Plenum [Google Scholar]
  111. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J. et al. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, and early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331:991–1004 [Google Scholar]
  112. Sola I, Moreno JL, Zuniga S, Alonso S, Enjuanes L. 2005. Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis. J. Virol. 79:2506–16Describes the relevance of sequence complementarity in coronavirus transcription and the composition of the transcription-regulating sequences. [Google Scholar]
  113. Spagnolo JF, Hogue BG. 2000. Host protein interactions with the 3′ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. J. Virol. 74:5053–65 [Google Scholar]
  114. Spiegel M, Pichlmair A, Martinez-Sobrido L, Cros J, Garcia-Sastre A. et al. 2005. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol. 79:2079–86 [Google Scholar]
  115. Stohlman SA, Baric RS, Nelson GN, Soe LH, Welter LM, Deans RJ. 1988. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 62:4288–95 [Google Scholar]
  116. Surjit M, Kumar R, Mishra RN, Reddy MK, Chow VT, Lal SK. 2005. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14–3–3-mediated translocation. J. Virol. 79:11476–86 [Google Scholar]
  117. Surjit M, Liu B, Jameel S, Chow VT, Lal SK. 2004. The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem. J. 383:13–18 [Google Scholar]
  118. Surjit M, Liu B, Kumar P, Chow VT, Lal SK. 2004. The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochem. Biophys. Res. Commun 317:1030–36 [Google Scholar]
  119. Sutton G, Fry E, Carter L, Sainsbury S, Walter T. et al. 2004. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure 12:341–53 [Google Scholar]
  120. Tahara SM, Dietlin TA, Bergmann CC, Nelson GW, Kyuwa S. et al. 1994. Coronavirus translational regulation: leader affects mRNA efficiency. Virology 202:621–30 [Google Scholar]
  121. Tahara SM, Dietlin TA, Nelson GW, Stohlman SA, Manno DJ. 1998. Mouse hepatitis virus nucleocapsid protein as a translational effector of viral mRNAs. Adv. Exp. Med. Biol. 440:313–18 [Google Scholar]
  122. Tan YJ, Fielding BC, Goh PY, Shen S, Tan TH. et al. 2004. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J. Virol. 78:14043–47 [Google Scholar]
  123. Tang BS, Chan KH, Cheng VC, Woo PC, Lau SK. et al. 2005. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. J. Virol. 79:6180–93Provides a comprehensive link between the genes up- and downregulated after coronavirus infection. [Google Scholar]
  124. Thiel V, Herold J, Schelle B, Siddell SG. 2001. Viral replicase gene products suffice for coronavirus discontinuous transcription. J. Virol. 75:6676–81 [Google Scholar]
  125. Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B. et al. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84:2305–15 [Google Scholar]
  126. Thiel V, Siddell SG. 1994. Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J. Gen. Virol. 75:3041–46 [Google Scholar]
  127. Tijms MA, Snijder EJ. 2003. Equine arteritis virus nonstructural protein 1, an essential factor for viral subgenomic mRNA synthesis, interacts with the cellular transcription cofactor p100. J. Gen. Virol. 84:2317–22 [Google Scholar]
  128. Tijms MA, van der Meer Y, Snijder EJ. 2002. Nuclear localization of nonstructural protein 1 and nucleocapsid protein of equine arteritis virus. J. Gen. Virol. 83:795–800 [Google Scholar]
  129. Tijms MA, van Dinten LC, Gorbalenya AE, Snijder EJ. 2001. A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc. Natl. Acad. Sci. USA 98:1889–94 [Google Scholar]
  130. Tsuchihashi Z, Brown PO. 1994. DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type I nucleocapsid protein. J. Virol. 68:5863–70 [Google Scholar]
  131. van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR. et al. 1999. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J. Virol. 73:7641–57 [Google Scholar]
  132. van Dinten LC, den Boon JA, Wassenaar ALM, Spaan WJM, Snijder EJ. 1997. An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc. Natl. Acad. Sci. USA 94:991–96 [Google Scholar]
  133. van Dinten LC, van Tol H, Gorbalenya AE, Snijder EJ. 2000. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J. Virol. 74:5213–23 [Google Scholar]
  134. van Marle G, Dobbe JC, Gultyaev AP, Luytjes W, Spaan WJM, Snijder EJ. 1999. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc. Natl. Acad. Sci. USA 96:12056–61describes the role of sequence complementarity in arterivirus transcription. [Google Scholar]
  135. von Grotthuss M, Wyrwicz LS, Rychlewski L. 2003. mRNA cap-1 methyltransferase in the SARS genome. Cell 113:701–2 [Google Scholar]
  136. Wang Y, Detrick B, Yu ZX, Zhang J, Chesky L, Hooks JJ. 2000. The role of apoptosis within the retina of coronavirus-infected mice. Invest. Ophthalmol. Vis. Sci. 41:3011–18 [Google Scholar]
  137. Wang Y, Zhang X. 1999. The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo. Virology 265:96–109 [Google Scholar]
  138. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL. et al. 2004. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136:95–103 [Google Scholar]
  139. Wurm T, Chen H, Hodgson T, Britton P, Brooks G, Hiscox JA. 2001. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J. Virol. 75:9345–56 [Google Scholar]
  140. Yang M, Li CK, Li K, Hon KL, Ng MH. et al. 2004. Hematological findings in SARS patients and possible mechanisms (review). Int. J. Mol. Med. 14:311–15 [Google Scholar]
  141. Yang Y, Xiong Z, Zhang S, Yan Y, Nguyen J. et al. 2005. Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem. J. 392:135–43 [Google Scholar]
  142. Yount B, Curtis KM, Baric RS. 2000. Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model. J. Virol. 74:10600–11 [Google Scholar]
  143. Yuan X, Shan Y, Zhao Z, Chen J, Cong Y. 2005. G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells. Virol. J. 2:66 [Google Scholar]
  144. Yuan X, Wu J, Shan Y, Yao Z, Dong B. et al. 2006. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology 346:74–85 [Google Scholar]
  145. Yuan X, Yao Z, Shan Y, Chen B, Yang Z. et al. 2005. Nucleolar localization of nonstructural protein 3b, a protein specifically encoded by the severe acute respiratory syndrome coronavirus. Virus Res. 114:70–79 [Google Scholar]
  146. Zhang X, Lai MMC. 1995. Interactions between the cytoplasmic proteins and the intergenic (promoter) sequence of mouse hepatitis virus RNA: correlation with the amounts of subgenomic mRNA transcribed. J. Virol. 69:1637–44 [Google Scholar]
  147. Zuñiga S, Sola I, Alonso S, Enjuanes L. 2004. Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J. Virol. 78:980–94Describes the role of the transcription-regulating sequences in CoV transcription that proposes a working model to study this process. [Google Scholar]
  148. Zuñiga S, Sola I, Moreno JL, Alonso S, Enjuanes L. 2006. Regulation of coronavirus transcription: viral and cellular proteins interacting with transcription-regulating sequences. Adv. Exp. Med. Biol. 581:31–35 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error