Fortunately, I began research in 1950 when the basic concepts of microbial genetics could be explored experimentally. I began with bacteriophage λ and tried to establish the colinearity of its linkage map with its DNA molecule. My students and I worked out the regulation of λ repressor synthesis for the establishment and maintenance of lysogeny. We also investigated the proteins responsible for assembly of the phage head. Using cell extracts, we discovered how to package DNA inside the head in vitro. Around 1972, I began to use molecular genetics to understand the developmental biology of In particular, I wanted to learn how myxococcus builds its multicellular fruiting body within which it differentiates spores. We identified two cell-to-cell signals used to coordinate development. We have elucidated, in part, the signal transduction pathway for C-signal that directs the morphogenesis of a fruiting body.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adler J, Kaiser AD. 1963. Mapping of the galactose genes of Escherichia coli by transduction with phage P1. Virology 19:117–26 [Google Scholar]
  2. Arber W, Kellenberger G, Weigle J. 1957. Defectiveness of lambda phage transducer. Schweiz. Z. Pathol. Bacteriol. 20:659–65 [Google Scholar]
  3. Arnold JW, Shimkets L. 1988. Inhibition of cell-cell interactions in Myxococcus xanthus by Congo red. J. Bacteriol. 170:5765–70 [Google Scholar]
  4. Arnold JW, Shimkets L J. 1988. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170:5771–77 [Google Scholar]
  5. Avery L, Kaiser D. 1983. In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. Mol. Gen. Genet. 191:99–109 [Google Scholar]
  6. Avery OT, MacLeod CM, McCarty M. 1944. Studies of the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79:137–58 [Google Scholar]
  7. Behmlander RM, Dworkin M. 1994. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:6295–303 [Google Scholar]
  8. Blackhart BD, Zusman D. 1985. Frizzy genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. USA 82:8767–70 [Google Scholar]
  9. Boysen A, Ellehauge E, Julien B, Søgaard-Andersen L. 2002. The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 184:1540–46 [Google Scholar]
  10. Bretscher AP, Kaiser D. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133:763–68 [Google Scholar]
  11. Burchard RP. 1970. Gliding motility mutants of Myxococcusxanthus. J. Bacteriol. 104:940–47 [Google Scholar]
  12. Burchard RP. 1982. Trail following by gliding bacteria. J. Bacteriol. 152:495–501 [Google Scholar]
  13. Campbell AM. 1962. Episomes. Adv. Genet. 11:101–45 [Google Scholar]
  14. Campbell AM. 1969. Episomes New York: Harper and Row.193 pp.
  15. Campos J, Geisselsoder J, Zusman D. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119:167–78 [Google Scholar]
  16. Casjens S. 1974. Bacteriophage lambda FII gene protein: role in head assembly. J. Mol. Biol. 90:1–23 [Google Scholar]
  17. Casjens S, Hohn T, Kaiser AD. 1970. Morphological proteins of phage lambda: identification of the major head protein as the product of gene E. Virology 42:496–507 [Google Scholar]
  18. Casjens S, Hohn T, Kaiser AD. 1972. Head assembly steps controlled by genes F and W in bacteriophage lambda. J. Mol. Biol. 64:551–63 [Google Scholar]
  19. Caspar DLD, Klug A. 1962. Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27:1–24 [Google Scholar]
  20. Denney RM, Yanofsky C. 1974. Isolation and characterization of specialized phi80 transducing phages carrying regions of the Salmonella typhimurium trp operon. J. Bacteriol. 118:505–13 [Google Scholar]
  21. Downard J. 1993. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development. J. Bacteriol. 175:7762–70 [Google Scholar]
  22. Dworkin M. 1999. Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus. BioEssays 21:590–95 [Google Scholar]
  23. Ellehauge E, Norregaard-Madsen M, Søgaard-Andersen L. 1998. The FruA signal transduction protein provides a checkpoint for the temporal coordination of intercellular signals in M. xanthus development. Mol. Microbiol. 30:807–13 [Google Scholar]
  24. Fischer P, Lipson C. 1982. Thinking About Science New York: Norton.334 pp.
  25. Friedman DI, Gottesman M. 1983. Lytic mode of lambda development. In Lambda II ed. RW Hendrix, JW Roberts, FW Stahl, RA Weisberg pp. 21–51 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  26. Georgopoulos C, Welch WJ. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9:601–34 [Google Scholar]
  27. Georgopoulos CP. 1971. Bacterial mutants in which the gene N function of bacteriophage lambda is blocked have an altered RNA polymerase. Proc. Natl. Acad. Sci. USA 68:2977–81 [Google Scholar]
  28. Georgopoulos CP, Hendrix RW, Casjens SR, Kaiser AD. 1973. Host participation in bacteriophage lambda head assembly. J. Mol. Biol. 76:45–60 [Google Scholar]
  29. Georgopoulos CP, Hendrix RW, Kaiser AD, Wood WB. 1972. Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. Nat. New Biol. 239:38–41 [Google Scholar]
  30. Gingery R, Echols H. 1967. Mutants of bacteriophage lambda unable to integrate into the host chromosome. Proc. Natl. Acad. Sci. USA 58:1507–14 [Google Scholar]
  31. Goodstein JR. 1991. Millikan's School New York: Norton.317 pp.
  32. Gottesman M, Yarmolinsky M. 1968. Integration-negative mutants of bacteriophage lambda. J. Mol. Biol. 31:487–505 [Google Scholar]
  33. Gronewold TMA, Kaiser D. 2001. The act operon controls the level and time of C-signal production for M. xanthus development. Mol. Microbiol. 40:744–56 [Google Scholar]
  34. Gronewold TMA, Kaiser D. 2002. act operon control of developmental gene expression in Myxococcus xanthus. J. Bacteriol. 184:1172–79 [Google Scholar]
  35. Guarneros G, Echols H. 1970. New mutants of bacteriophage lambda with a specific defect in excision from the host chromosome. J. Mol. Biol. 47:565–74 [Google Scholar]
  36. Guthrie G, Sinsheimer R. 1963. Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage phiX174. Biochim. Biophys. Acta 72:290–97 [Google Scholar]
  37. Hagen DC, Bretscher AP, Kaiser D. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64:284–96 [Google Scholar]
  38. Hershey AD, Burgi E, Ingraham L. 1963. Cohesion of DNA molecules isolated from phage lambda. Proc. Natl. Acad. Sci. USA 49:748–55 [Google Scholar]
  39. Hershey AD, Goldberg E, Burgi E, Ingraham L. 1963. Local denaturation of DNA by shearing forces and by heat. J. Mol. Biol. 6:230–43 [Google Scholar]
  40. Hodgkin J, Kaiser D. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74:2938–42 [Google Scholar]
  41. Hodgkin J, Kaiser D. 1979. Genetics of gliding motility in M. xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171:167–76 [Google Scholar]
  42. Hodgkin J, Kaiser D. 1979. Genetics of gliding motility in M. xanthus (Myxobacterales): Two gene systems control movement. Mol. Gen. Genet. 171:177–91 [Google Scholar]
  43. Hogness DS, Simmons JR. 1964. Breakage of lambda dg DNA: chemical and genetic characterization of each isolated half-molecule. J. Mol. Biol. 9:411–38 [Google Scholar]
  44. Hoiczyk E, Baumeister W. 1998. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr. Biol. 8:1161–68 [Google Scholar]
  45. Igoshin O, Goldbetter A, Kaiser D, Oster G. 2004. A biochemical oscillator explains the developmental progression of myxobacteria. Proc. Natl. Acad. Sci. USA 101:15760–65 [Google Scholar]
  46. Igoshin O, Mogilner A, Welch R, Kaiser D, Oster G. 2001. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Natl. Acad. Sci. USA 98:14913–18 [Google Scholar]
  47. Jackson DA, Symons RH, Berg P. 1972. Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 69:2904–9 [Google Scholar]
  48. Jacob F, Wollman E. 1954. Etude genetique d'un bacteriophage tempere d'Escherichia coli. I. Le systeme genetique du bacteriophage. Ann. Inst. Pasteur 87:653–73 [Google Scholar]
  49. Jacob F, Wollman EL. 1961. Sexuality and the Genetics of Bacteria New York: Academic.374 pp.
  50. Jahn E. 1924. Beitrage zur botanischen protistologie. I. Die Polyangiden Leipzig, Ger.: Gebruder Borntraeger
  51. Jelsbak L. 2003. Online movie of several reversing cells. Nat. Rev. Microbiol. 1:45–54 [Google Scholar]
  52. Jelsbak L, Søgaard-Andersen L. 1999. The cell-surface associated C-signal induces behavioral changes in individual M. xanthus cells during fruiting body morphogenesis. Proc. Natl. Acad. Sci. USA 96:5031–36 [Google Scholar]
  53. Jelsbak L, Søgaard-Andersen L. 2000. Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Curr. Opin. Microbiol. 3:637–42 [Google Scholar]
  54. Jelsbak L, Søgaard-Andersen L. 2002. Pattern formation by a cell-surface associated morphogen in M. xanthus. Proc. Natl. Acad. Sci. USA 99:2032–37 [Google Scholar]
  55. Josse J, Kaiser AD, Kornberg A. 1961. Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J. Biol. Chem. 236:864–75 [Google Scholar]
  56. Julien B, Kaiser AD, Garza A. 2000. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 97:9098–103 [Google Scholar]
  57. Kaiser AD. 1955. A genetic study of the temperate coliphage lambda. Virology 1:424–43 [Google Scholar]
  58. Kaiser AD. 1957. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology 3:42–61 [Google Scholar]
  59. Kaiser AD. 1962. The production of phage chromosome fragments and their capacity for genetic transfer. J. Mol. Biol. 4:275–87 [Google Scholar]
  60. Kaiser AD. 1970. Two sequence-specific DNA-protein recognition systems. In The Neurosciences: Second Study Program ed. FO Schmitt pp. 955–62 New York: Rockefeller Univ. Press [Google Scholar]
  61. Kaiser AD, Hogness DS. 1960. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda dg. J. Mol. Biol. 2:392–415 [Google Scholar]
  62. Kaiser AD, Inman RB. 1965. Cohesion and the biological activity of bacteriophage lambda DNA. J. Mol. Biol. 13:78–91 [Google Scholar]
  63. Kaiser AD, Jacob F. 1957. Recombination between related temperate phages and genetic determination of immunity specificity and prophage localization. Virology 4:509–21 [Google Scholar]
  64. Kaiser AD, Masuda T. 1970. Evidence for a prophage excision gene in lambda. J. Mol. Biol. 47:557–64 [Google Scholar]
  65. Kaiser D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:5952–56 [Google Scholar]
  66. Kaiser D. 2001. Building a multicellular organism. Annu. Rev. Genet. 35:103–23 [Google Scholar]
  67. Kaiser D. 2003. Coupling cell movement to multicellular development in myxobacteria. Nat. Rev. Microbiol. 1:45–54 [Google Scholar]
  68. Kaiser D. 2004. Signaling in myxobacteria. Annu. Rev. Microbiol. 58:75–98 [Google Scholar]
  69. Kaiser D, Crosby C. 1983. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil 3:227–45 [Google Scholar]
  70. Kaiser D, Dworkin M. 1975. Gene transfer to myxobacterium by Escherichia coli phage P1. Science 187:653–54 [Google Scholar]
  71. Kaiser D, Masuda T. 1973. In vitro assembly of bacteriophage lambda heads. Proc. Natl. Acad. Sci. USA 70:260–64 [Google Scholar]
  72. Kaiser D, Syvanen M, Masuda T. 1975. DNA packaging steps in bacteriophage lambda head assembly. J. Mol. Biol. 91:175–86 [Google Scholar]
  73. Kaiser D, Welch R. 2004. Dynamics of fruiting body morphogenesis. J. Bacteriol. 186:919–27 [Google Scholar]
  74. Kaiser D, Yu R. 2005. Reversing cell polarity: evidence and hypothesis. Curr. Opin. Microbiol. 8:216–21 [Google Scholar]
  75. Kaplan HB, Kuspa A, Kaiser D. 1991. Suppressors that permit A signal-independent developmental gene expression in Myxococcus xanthus. J. Bacteriol. 173:1460–70 [Google Scholar]
  76. Kaplan HB, Plamann L. 1996. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol. Lett. 139:89–95 [Google Scholar]
  77. Katsura I. 1983. Tail assembly and injection. In Lambda II ed. RW Hendrix, JW Roberts, FW Stahl, RA Weisberg pp. 331–46 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  78. Keseler IM, Kaiser D. 1995. An early A-signal-dependent gene in Myxococcus xanthus has a sigma-54-like promoter. J. Bacteriol. 177:4638–44 [Google Scholar]
  79. Kim SK, Kaiser D. 1990. C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61:19–26 [Google Scholar]
  80. Kim SK, Kaiser D. 1990. Cell alignment required in differentiation of Myxococcus xanthus. Science 249:926–28 [Google Scholar]
  81. Kim SK, Kaiser D. 1990. Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc. Natl. Acad. Sci. USA 87:3635–39 [Google Scholar]
  82. Kim SK, Kaiser D. 1991. C-factor has distinct aggregation and sporulation thresholds during Myxococcus development. J. Bacteriol. 173:1722–28 [Google Scholar]
  83. Kimsey HH, Kaiser D. 1991. Targeted disruption of the Myxococcus xanthus orotidine 5'-monophosphate decarboxylase gene: effects on growth and fruiting-body development. J. Bacteriol. 173:6790–97 [Google Scholar]
  84. King N. 2004. The unicellular ancestry of animal development. Dev. Cell 7:313–25 [Google Scholar]
  85. Kroos L, Hartzell P, Stephens K, Kaiser D. 1988. A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. Genes Dev. 2:1677–85 [Google Scholar]
  86. Kroos L, Kaiser D. 1984. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 81:5816–20 [Google Scholar]
  87. Kroos L, Kaiser D. 1987. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1:840–54 [Google Scholar]
  88. Kroos L, Kuspa A, Kaiser D. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117:252–66 [Google Scholar]
  89. Kroos L, Kuspa A, Kaiser D. 1990. Defects in fruiting body development caused by Tn5lac insertions in M. xanthus. J. Bacteriol. 172:484–87 [Google Scholar]
  90. Kruse T, Lobendanz S, Bertheleson NMS, Søgaard-Andersen L. 2001. C-signal: a cell surface-associated morphogen that induces and coordinates multicellular fruiting body morphogenesis and sporulation in M. xanthus. Mol. Microbiol. 40:156–68 [Google Scholar]
  91. Kuhlwein H, Reichenbach H. 1965. Schwarmentwicklung und Morphogenese bei Myxobacterien—Archangium, Myxococcus, Chondrococcus, Chondromyces. Film C893 Gottingen, Ger.: Inst. Wissensch. Film
  92. Kuner J, Avery L, Berg DE, Kaiser D. 1981. Uses of transposon Tn5 in the genetic analysis of Myxococcus xanthus. In Microbiology 1981 ed. D Schlesinger pp. 128–32 Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  93. Kuspa A, Plamann L, Kaiser D. 1992. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174:3319–26 [Google Scholar]
  94. LaRossa R, Kuner J, Hagen D, Manoil C, Kaiser D. 1983. Developmental cell interactions in Myxococcus: analysis of mutants. J. Bacteriol. 153:1394–404 [Google Scholar]
  95. Lederberg J, Tatum EL. 1946. Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symp. Quant. Biol. 11:113–14 [Google Scholar]
  96. Lee BU, Lee K, Mendez J, Shimkets L J. 1995. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)+-containing protein. Genes Dev. 9:2964–73 [Google Scholar]
  97. Li S, Lee BU, Shimkets L. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6:401–10 [Google Scholar]
  98. Licking E, Gorski L, Kaiser D. 2000. A common step for changing the cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J. Bacteriol. 182:3553–58 [Google Scholar]
  99. Liedke-Kulke M, Kaiser AD. 1967. Genetic control of prophage insertion specificity in bacteriophages lambda and 21. Virology 32:465–74 [Google Scholar]
  100. Little JW. 1967. An exonuclease induced by bacteriophage lambda. 2. Nature of the enzymatic reaction. J. Biol. Chem. 242:679–86 [Google Scholar]
  101. Little JW, Lehman IR, Kaiser AD. 1967. An exonuclease induced by bacteriophage lambda. 1. Preparation of the crystalline enzyme. J. Biol. Chem. 242:672–78 [Google Scholar]
  102. Lobban PE. 1969. The generation of transducing phage in vitro. November 6, 1969. Third exam, Biochem. Dep., Stanford Univ. Copy in Stanford Library Arch.
  103. Lobban P, Kaiser AD. 1973. Enzymatic end-to-end joining of DNA molecules. J. Mol. Biol. 78:453–71 [Google Scholar]
  104. Lobedanz S, Søgaard-Andersen L. 2003. Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev. 17:2151–61 [Google Scholar]
  105. Lu A, Cho K, Black WP, Duan X, Lux R. et al. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55:206–20 [Google Scholar]
  106. Luria SE, Delbrück M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–11 [Google Scholar]
  107. Lwoff A. 1953. Lysogeny. Bacteriol. Rev. 17:269–337 [Google Scholar]
  108. MacHattie L, Thomas C. 1964. DNA from bacteriophage lambda: molecular length and conformation. Science 144:1142–44 [Google Scholar]
  109. Manoil C, Kaiser D. 1980. Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation. J. Bacteriol. 141:297–304 [Google Scholar]
  110. Martin J, Hartl FU. 1993. Protein folding in the cell: molecular chaperones pave the way. Structure 1:161–64 [Google Scholar]
  111. Martin S, Sodergren E, Masuda T, Kaiser D. 1978. Systematic isolation of transducing phages for Myxococcus xanthus. Virology 88:44–53 [Google Scholar]
  112. Matsumura M, Signor G, Matthews BW. 1989. Substantial increase of protein stability by multiple disulphide bonds. Nature 342:291–93 [Google Scholar]
  113. Merz AJ, So M, Sheetz MP. 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98–102 [Google Scholar]
  114. Meyer F, Mackal R, Tao M, Evans E. 1961. Infectious deoxyribonucleic acid from gamma bacteriophage. J. Biol. Chem. 236:1141–43 [Google Scholar]
  115. Nierman WC, Kaiser D, Goldman B, Slater S, Durkin A. et al. 2006. Genome of Myxococcus xanthus offers insights into social behavior and predation. PLoS Biol. In press
  116. Nudleman E, Kaiser D. 2004. Pulling together with type IV pili. J. Mol. Microbiol. Biotechnol. 7:52–62 [Google Scholar]
  117. Nudleman E, Wall D, Kaiser D. 2005. Cell-to-cell transfer of bacterial outermembrane lipoproteins. Science 309:125–27 [Google Scholar]
  118. Nudleman E, Wall D, Kaiser D. 2006. Tgl lipoprotein is required to assemble PilQ, the type IV pilus secretin of Myxococcus xanthus. Mol. Microbiol. 60:16–29 [Google Scholar]
  119. Plamann L, Kuspa A, Kaiser D. 1992. Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J. Bacteriol. 174:3311–18 [Google Scholar]
  120. Ptashne M. 1971. Repressor and its action. In The Bacteriophage Lambda ed. AD Hershey pp. 221–37 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  121. Qualls G, Stephens K, White D. 1978. Morphogenetic movements and multicellular development in the fruiting myxobacterium, Stigmatella aurantiaca. Dev. Biol. 66:270–74 [Google Scholar]
  122. Radding CM, Kaiser AD. 1963. Gene transfer by broken molecules of lambda DNA: activity of the left half-molecule. J. Mol. Biol. 7:225–33 [Google Scholar]
  123. Reichardt L, Kaiser AD. 1971. Control of lambda repressor synthesis. Proc. Natl. Acad. Sci. USA 68:2185–89 [Google Scholar]
  124. Reichardt LF. 1975. Control of bacteriophage lambda repressor synthesis after phage infection: the role of the N, cII, cIII and cro products. J. Mol. Biol. 93:267–88 [Google Scholar]
  125. Reichardt LF. 1975. Control of bacteriophage lambda repressor synthesis: regulation of the maintenance pathway by the cro and cI products. J. Mol. Biol. 93:289–90 [Google Scholar]
  126. Richardson CC, Inman RB, Kornberg A. 1964. Enzymatic synthesis of deoxyribonucleic acid. 18. The repair of partially single-stranded DNA templates by DNA polymerase. J. Mol. Biol. 116:46–69 [Google Scholar]
  127. Richardson CC, Lehman IR, Kornberg A. 1964. A deoxyribonucleic acid phosphatase-exonuclease from E. coli. II. Characterization of the exonuclease activity. J. Biol. Chem. 239:251–58 [Google Scholar]
  128. Ris H, Chandler BL. 1963. The ultrastructure of genetic systems in prokaryotes and eukaryotes. Cold Spring Harbor Symp. Quant. Biol. 28:1 [Google Scholar]
  129. Sager B, Kaiser D. 1993. Two cell-density domains within the Myxococcus xanthus fruiting body. Proc. Natl. Acad. Sci. USA 90:3690–94 [Google Scholar]
  130. Sager B, Kaiser D. 1994. Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev. 8:2793–804 [Google Scholar]
  131. Signer E, Beckwith J. 1966. Transposition of the lac region of Escherichia coli. III. The mechanism of attachment of bacteriophage phi80 to the bacterial chromosome. J. Mol. Biol. 22:33–51 [Google Scholar]
  132. Singer M, Kaiser D. 1995. Ectopic production of guanosine penta- and tetra-phosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev. 9:1633–44 [Google Scholar]
  133. Skerker J, Berg H. 2001. Direct observation of extension and retraction of type IV pili. Proc. Natl. Acad. Sci. USA 98:6901–4 [Google Scholar]
  134. Sodergren E, Cheng Y, Avery L, Kaiser D. 1983. Recombination in the vicinity of insertions of transposon Tn5 in Myxococcus xanthus. Genetics 105:281–91 [Google Scholar]
  135. Sodergren E, Kaiser D. 1983. Insertions of Tn5 near genes that govern stimulatable cell motility in Myxococcus. J. Mol. Biol. 167:295–310 [Google Scholar]
  136. Søgaard-Andersen L, Overgaard M, Lobedanz S, Ellehauge E, Jelsbak L, Rasmussen AA. 2003. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol. Microbiol. 48:1–8 [Google Scholar]
  137. Søgaard-Andersen L, Slack F, Kimsey H, Kaiser D. 1996. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev. 10:740–54 [Google Scholar]
  138. Spormann AM, Kaiser D. 1999. Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements. J. Bacteriol. 181:2593–601 [Google Scholar]
  139. Stanier RY. 1942. Elasticotaxis in Myxobacteria. J. Bacteriol. 44:405–12 [Google Scholar]
  140. Starr MP, Skerman VP. 1965. Bacterial diversity: the natural history of selected morphologically unusual bacteria. Annu. Rev. Microbiol. 19:407–54 [Google Scholar]
  141. Strack HB, Kaiser AD. 1965. On the structure of the ends of lambda DNA. J. Mol. Biol. 12:36–49 [Google Scholar]
  142. Syvanen M. 1975. Processing of bacteriophage lambda DNA during its assembly into heads. J. Mol. Biol. 91:165–74 [Google Scholar]
  143. Thöny-Meyer L, Kaiser D. 1993. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol. 175:7450–62 [Google Scholar]
  144. Tilly K, Murialdo H, Georgopoulos CP. 1981. Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc. Natl. Acad. Sci. USA 78:1629–33 [Google Scholar]
  145. Vale RD. 2000. AAA proteins: lords of the ring. J. Cell Biol. 150:F13–19 [Google Scholar]
  146. Visconti N, Delbrück M. 1951. The mechanism of genetic recombination in phage. Genetics 38:5–33 [Google Scholar]
  147. Wall D, Kaiser D. 1999. Type IV pili and cell motility. Mol. Microbiol. 32:1–10 [Google Scholar]
  148. Wall D, Kolenbrander PE, Kaiser D. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pili biogenesis, S motility and development. J. Bacteriol. 181:24–33 [Google Scholar]
  149. Wang JC, Kaiser AD. 1973. Evidence that the cohesive ends of mature lambda DNA are generated by the gene A product. Nat. New Biol. 241:16–17 [Google Scholar]
  150. Weigle J. 1953. Induction of mutations in a bacterial virus. Proc. Natl. Acad. Sci. USA 39:628–36 [Google Scholar]
  151. Weigle J. 1961. Densities of transducing lambda bacteriophages. J. Mol. Biol. 3:393–98 [Google Scholar]
  152. Weigle J. 1966. Assembly of phage lambda in vitro. Proc. Natl. Acad. Sci. USA 55:1462–66 [Google Scholar]
  153. Welch R, Kaiser D. 2001. Cell behavior in traveling wave patterns of myxobacteria. Proc. Natl. Acad. Sci. USA 98:14907–12 [Google Scholar]
  154. Wickner W, Brutlag D, Schekman R, Kornberg A. 1972. RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc. Natl. Acad. Sci. USA 69:965–69 [Google Scholar]
  155. Wolfgang M, Lauer P, Park HS, Brossay L, Hébert J, Koomey M. 1998. Pil T mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol. Microbiol. 29:321–30 [Google Scholar]
  156. Wolgemuth C, Hoiczyk E, Kaiser D, Oster G. 2002. How myxobacteria glide. Curr. Biol. 12:369–77 [Google Scholar]
  157. Wu R, Kaiser AD. 1967. Mapping the 5′-terminal nucleotides of the DNA of bacteriophage lambda and related phages. Proc. Natl. Acad. Sci. USA 57:170–77 [Google Scholar]
  158. Wu R, Kaiser AD. 1968. Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol. 35:523–37 [Google Scholar]
  159. Wu SS, Kaiser D. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179:7748–58 [Google Scholar]
  160. Yang Z, Ma X, Tong L, Kaplan HB, Shimkets L J, Shi W. 2000. The Myxococcus xanthus dif genes are required for the biogenesis of cell surface fibrils essential for social gliding motility. J. Bacteriol. 182:5793–98 [Google Scholar]
  161. Yanofsky C, Carlton BC, Guest JR, Helinski D, Henning U. 1964. On the colinearity of gene structure and protein structure. Proc. Natl. Acad. Sci. USA 51:266–72 [Google Scholar]
  162. Zissler J. 1967. Integration-negative (int) mutants of phage lambda. Virology 31:189 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error