1932

Abstract

Abstract

The genomes of unicellular species, particularly prokaryotes, are greatly reduced in size and simplified in terms of gene structure relative to those of multicellular eukaryotes. Arguments proposed to explain this disparity include selection for metabolic efficiency and elevated rates of deletion in microbes, but the evidence in support of these hypotheses is at best equivocal. An alternative explanation based on fundamental population-genetic principles is proposed here. By increasing the mutational target sizes of associated genes, most forms of nonfunctional DNA are opposed by weak selection. Free-living microbial species have elevated effective population sizes, and the consequent reduction in the power of random genetic drift appears to be sufficient to enable natural selection to inhibit the accumulation of excess DNA. This hypothesis provides a potentially unifying explanation for the continuity in genomic scaling from prokaryotes to multicellular eukaryotes, the divergent patterns of mitochondrial evolution in animals and land plants, and various aspects of genomic modification in microbial endosymbionts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.60.080805.142300
2006-10-13
2024-06-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.micro.60.080805.142300
Loading
/content/journals/10.1146/annurev.micro.60.080805.142300
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error