1932

Abstract

I have dedicated the past 46 years of my life to science and I expect to be active in research for many more years. I have been lucky in my professional life. During my postdoctoral years I discovered two proteins that I showed to be involved in the initiation of protein synthesis. Working with bacteriophage ø29 for the past 40 years, we have made many interesting findings. Among them is the discovery of a protein covalently linked to the 5′ ends of ø29 DNA that we later showed to be the primer for the initiation of ø29 DNA replication. Also, the finding of the ø29 DNA polymerase with its properties of high processivity, strand displacement, and high fidelity has been very rewarding. The ø29 DNA polymerase has become the ideal enzyme for DNA amplification, both rolling circle and whole-genome amplification. I also am happy because I have worked with many brilliant students and collaborators over the years, most of whom have become excellent scientists.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.61.080706.093415
2007-10-13
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/mi/61/1/annurev.micro.61.080706.093415.html?itemId=/content/journals/10.1146/annurev.micro.61.080706.093415&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson DL, Hickman DD, Reilly BE. 1966. Structure of Bacillus subtilis bacteriophage ø29 and the length of ø29 deoxyribonucleic acid. J. Bacteriol. 91:2081–89 [Google Scholar]
  2. Avila J, Hermoso JM, Viñuela E, Salas M. 1970. Subunit composition of B. subtilis RNA polymerase. Nature 226:1244–45 [Google Scholar]
  3. Badía D, Camacho A, Pérez-Lago L, Escandón C, Salas M, Coll M. 2006. The structure of ø29 transcription regulator p4-DNA complex reveals a novel DNA binding motif. Mol. Cell 22:73–81 [Google Scholar]
  4. Bernad A, Blanco L, Lázaro JM, Martín G, Salas M. 1989. A conserved 3′–5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–28 [Google Scholar]
  5. Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M. 1989. Highly efficient DNA synthesis by the phage ø29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264:8935–40 [Google Scholar]
  6. Blanco L, Lázaro JM, de Vega M, Bonnin A, Salas M. 1994. Terminal protein-primed DNA amplification. Proc. Natl. Acad. Sci. USA 91:12198–202 [Google Scholar]
  7. Blanco L, Salas M. 1985. Replication of ø29 DNA with purified terminal protein and DNA polymerase: synthesis of full-length ø29 DNA. Proc. Natl. Acad. Sci. USA 82:6404–8 [Google Scholar]
  8. Blanco L, Salas M. 1996. Relating structure to function in ø29 DNA polymerase. J. Biol. Chem. 271:8509–12 [Google Scholar]
  9. Dean FB, Honoso S, Fang L, Wu X, Farugi AF. et al. 2001. Comprehensive human genome amplification. Proc. Natl. Acad. Sci. USA 99:5261–66 [Google Scholar]
  10. Dean FB, Nelson JR, Geisler TL, Lasken RS. 2001. Rapid amplification of plasmid and phage DNA using ø29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11:1095–99 [Google Scholar]
  11. Elías-Arnanz M, Salas M. 1999. Functional interactions between a phage histone-like protein and a transcriptional factor in regulation of ø29 early-late transcriptional switch. Genes Dev. 13:2502–13 [Google Scholar]
  12. Grunberg-Manago M, Ochoa S. 1955. Enzymatic synthesis and breakdown of polynucleotides; polynucleotide phosphorylase. J. Am. Chem. Soc. 77:3165–66 [Google Scholar]
  13. Guo P, Erickson S, Anderson D. 1987. A small viral RNA is required for in vitro packaging of bacteriophage ø29 DNA. Science 236:690–94 [Google Scholar]
  14. Kamtekar S, Berman A, Wang J, Lazaro JM, de Vega M. et al. 2004. Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage ø29. Mol. Cell 16:609–18 [Google Scholar]
  15. Kamtekar S, Berman A, Wang J, Lazaro JM, de Vega M. et al. 2006. Structure of bacteriophage ø29 DNA polymerase bound to its protein-primer: implications for the transition from initiation to elongation. EMBO J. 25:1335–43 [Google Scholar]
  16. Last JA, Stanley WM Jr, Salas M, Hille MB, Wahba AJ, Ochoa S. 1967. Translation of the genetic message. IV. UAA as a chain termination codon. Proc. Natl. Acad. Sci. USA 57:1062–67 [Google Scholar]
  17. Meijer WJ, Castilla-Llorente V, Villar L, Murray H, Errington J, Salas M. 2005. Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage phi29. EMBO J. 24:3647–57 [Google Scholar]
  18. Mellado RP, Moreno F, Viñuela E, Salas M, Reilly BE, Anderson DL. 1976. Genetic analysis of bacteriophage ø29 of B. subtilis: integration and mapping of reference mutants of two collections. J. Virol. 19:495–500 [Google Scholar]
  19. Méndez J, Blanco L, Esteban JA, Bernad A, Salas M. 1992. Initiation of ø29 DNA replication occurs at the second 3′ nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc. Natl. Acad Sci. USA 89:9579–83 [Google Scholar]
  20. Méndez J, Blanco L, Salas M. 1997. Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase. EMBO J. 16:2519–27 [Google Scholar]
  21. Monsalve M, Calles B, Mencía M, Salas M, Rojo F. 1997. Transcription activation or repression by phage ø29 protein p4 depends on the strength of the RNA polymerase-promoter interactions. Mol. Cell 1:1–9 [Google Scholar]
  22. Ortín J, Viñuela E, Salas M, Vásquez C. 1971. DNA-protein complex in circular DNA from phage ø29. Nat. New Biol. 234:275–77 [Google Scholar]
  23. Peñalva MA, Salas M. 1982. Initiation of phage ø29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5′-dAMP. Proc. Natl. Acad. Sci. USA 79:5522–26 [Google Scholar]
  24. Rekosh DM, Russell WC, Bellet AJ, Robinson AJ. 1977. Identification of a protein linked to the ends of adenovirus DNA. Cell 11:283–95 [Google Scholar]
  25. Robinson AJ, Younghusband HB, Bellet AJ. 1973. A circular DNA-protein complex from adenoviruses. Virology 56:54–69 [Google Scholar]
  26. Rodríguez I, Lázaro JM, Blanco L, Kamtekar S, Berman AJ. et al. 2005. A specific subdomain in ø29 DNA polymerase confers both processivity and strand displacement capacity. Proc. Natl. Acad. Sci. USA 102:6407–12 [Google Scholar]
  27. Rojo F, Mencía M, Monsalve M, Salas M. 1998. Transcription activation and repression by interaction of a regulator with the α subunit of RNA polymerase: the model of phage ø29 protein p4. Progr. Nucleic Acids Res. Mol. Biol. 60:29–46 [Google Scholar]
  28. Salas J, Salas M, Viñuela E, Sols A. 1965. Glucokinase of rabbit liver: purification and properties. J. Biol. Chem. 240:1014–18 [Google Scholar]
  29. Salas M, de Vega M. 2006. Bacteriophage protein-primed DNA replication. In Recent Advances in DNA Virus Replication ed. KL Hefferon pp. 259–88 Kerala, India: Res. Signpost Transw. Res. Netw. [Google Scholar]
  30. Salas M, de Vega M, Lázaro JM, Blanco L. 2004. ø29 DNA polymerase, a potent amplification enzyme. In DNA Amplification: Current Technologies and Applications ed. VV Demidov, NE Broude pp. 21–34 Norfolk, UK: Horizon Bioscience [Google Scholar]
  31. Salas M, Hille MB, Last JA, Wahba AJ, Ochoa S. 1967. Translation of the genetic message. II. Effect of initiation factors on the binding of formyl-methionyl-tRNA to ribosomes. Proc. Natl. Acad. Sci. USA 57:387–94 [Google Scholar]
  32. Salas M, Mellado RP, Viñuela E, Sogo JM. 1978. Characterization of a protein covalently linked to the 5′ termini of the DNA of Bacillus subtilis phage ø29. J. Mol. Biol. 119:269–91 [Google Scholar]
  33. Salas M, Miller JT, Leis J, DePamphilis ML. 1996. Mechanisms for priming DNA synthesis. In DNA Replication in Eukaryotic Cells ed. ML DePamphilis pp. 131–76 Cold Spring Harbor, NY: Cold Spring Harbor Press [Google Scholar]
  34. Salas M, Miller MJ, Wahba AJ, Ochoa S. 1967. Translation of the genetic message. V. Effect of Mg2+ and formylation of methionine on protein synthesis. Proc. Natl. Acad. Sci. USA 57:1865–69 [Google Scholar]
  35. Salas M, Smith MA, Stanley WM Jr, Wahba AJ, Ochoa S. 1965. Direction of reading of the genetic message. J. Biol. Chem. 240:3988–95 [Google Scholar]
  36. Salas M, Viñuela E, Sols A. 1963. Insulin-dependent synthesis of liver glucokinase in the rat. J. Biol. Chem. 238:3535–38 [Google Scholar]
  37. Salas M, Viñuela E, Sols A. 1965. Spontaneous and enzymatically catalyzed anomerization of glucose-6-P and anomeric specificity of related enzymes. J. Biol. Chem. 240:561–68 [Google Scholar]
  38. Salas ML, Viñuela E, Salas M, Sols A. 1965. Citrate inhibition of phosphofructokinase and the Pasteur effect. Biochem. Biophys. Res. Commun. 19:371–76 [Google Scholar]
  39. Serrano M, Salas M, Hermoso JM. 1990. A novel nucleoprotein complex at a replication origin. Science 248:1012–16 [Google Scholar]
  40. Serrano-Heras G, Salas M, Bravo A. 2006. A uracil-DNA glycosylase inhibitor encoded by a non-uracil containing viral DNA. J. Biol. Chem. 281:7068–74 [Google Scholar]
  41. Shapiro AL, Viñuela E, Maizel HV. 1967. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun. 28:815–20 [Google Scholar]
  42. Smith MA, Salas M, Stanley WM Jr, Wahba AJ, Ochoa S. 1966. Direction of reading of the genetic message. II. Proc. Natl. Acad. Sci. USA 55:141–47 [Google Scholar]
  43. Stanley WM Jr, Salas M, Wahba AJ, Ochoa S. 1966. Translation of the genetic message. I. Factors involved in the initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 56:290–95 [Google Scholar]
  44. Villanueva N, Salas M. 1981. Adsorption of bacteriophage ø29 to Bacillus subtilis through the neck appendages of the viral particle. J. Virol. 38:15–19 [Google Scholar]
  45. Viñuela E, Algranati MI, Ochoa S. 1967. Synthesis of virus-specific proteins in E. coli infected with the RNA bacteriophage MS2. Eur. J. Biochem. 1:3–11 [Google Scholar]
  46. Viñuela E, Salas M, Ochoa S. 1967. Translation of the genetic message. III. Formylmethionine as initiator of proteins programed by polycistronic messenger RNA. Proc. Natl. Acad. Sci. USA 57:729–34 [Google Scholar]
  47. Viñuela E, Salas M, Sols A. 1963. Glucokinase and hexokinase in liver in relation to glycogen synthesis. J. Biol. Chem. 238:1175–77 [Google Scholar]
/content/journals/10.1146/annurev.micro.61.080706.093415
Loading
/content/journals/10.1146/annurev.micro.61.080706.093415
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error