Dengue is a spectrum of disease caused by four serotypes of the most prevalent arthropod-borne virus affecting humans today, and its incidence has increased dramatically in the past 50 years. Due in part to population growth and uncontrolled urbanization in tropical and subtropical countries, breeding sites for the mosquitoes that transmit dengue virus have proliferated, and successful vector control has proven problematic. Dengue viruses have evolved rapidly as they have spread worldwide, and genotypes associated with increased virulence have expanded from South and Southeast Asia into the Pacific and the Americas. This review explores the human, mosquito, and viral factors that contribute to the global spread and persistence of dengue, as well as the interaction between the three spheres, in the context of ecological and climate changes. What is known, as well as gaps in knowledge, is emphasized in light of future prospects for control and prevention of this pandemic disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aaskov J, Buzacott K, Field E, Lowry K, Berlioz-Arthaud A, Holmes EC. 1.  2007. Multiple recombinant dengue type 1 viruses in an isolate from a dengue patient. J. Gen. Virol. 88:3334–40 [Google Scholar]
  2. Adams B, Holmes EC, Zhang C, Mammen MP Jr, Nimmannitya S et al.2.  2006. Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc. Natl. Acad. Sci. USA 103:14234–39Showed that temporary cross-immunity can explain oscillations and periodicity of individual DENV serotypes in Thailand and linked clade replacement events to potential cross-reactive protection between serotypes. [Google Scholar]
  3. Ali M, Wagatsuma Y, Emch M, Breiman RF. 3.  2003. Use of a geographic information system for defining spatial risk for dengue transmission in Bangladesh: role for Aedes albopictus in an urban outbreak. Am. J. Trop. Med. Hyg. 69:634–40 [Google Scholar]
  4. Anderson R, May R. 4.  1991. Infectious Diseases of Humans: Dynamics and Control Oxford: Oxford Univ. Press
  5. Andersson N. 5.  1996. Evidence-based planning: the philosophy and methods of sentinel community surveillance Washington, DC: World Bank Econ. Dev. Inst.
  6. Armstrong PM, Rico-Hesse R. 6.  2003. Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti. Am. J. Trop. Med. Hyg. 68:539–44 [Google Scholar]
  7. Ashburn P, Craig C. 7.  1907. Experimental investigations regarding the etiology of dengue fever. J. Infect. Dis. 4:440–75 [Google Scholar]
  8. Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S et al.8.  2006. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J. Infect. Dis. 193:1078–88 [Google Scholar]
  9. Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI et al.9.  2006. Serotype-specific differences in clinical manifestations of dengue. Am. J. Trop. Med. Hyg. 74:449–56 [Google Scholar]
  10. Balmaseda A, Hammond SN, Tellez Y, Imhoff L, Rodriguez Y et al.10.  2006. High seroprevalence of antibodies against dengue virus in a prospective study of schoolchildren in Managua, Nicaragua. Trop. Med. Int. Health 11:935–42 [Google Scholar]
  11. Bang YH, Pant CP. 11.  1972. A field trial of Abate larvicide for the control of Aedes aegypti in Bangkok, Thailand. Bull. WHO 46:416–25 [Google Scholar]
  12. Beatty M, Letson W, Edgil D, Margolis H. 12.  2007. Estimating the total world population at risk for locally acquired dengue infection Abstract presented at Annu. Meet. Am. Soc. Trop. Med. Hyg., 56th, Philadelphia
  13. Bennett KE, Flick D, Fleming KH, Jochim R, Beaty BJ, Black WC. 13.  2005. Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti. Genetics 170:185–94 [Google Scholar]
  14. Bennett KE, Olson KE, Muñoz Mde L, Fernandez-Salas I, Farfan-Ale JA et al.14.  2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am. J. Trop. Med. Hyg. 67:85–92 [Google Scholar]
  15. Bennett SN, Holmes EC, Chirivella M, Rodriguez DM, Beltran M et al.15.  2003. Selection-driven evolution of emergent dengue virus. Mol. Biol. Evol. 20:1650–58 [Google Scholar]
  16. Bennett SN, Holmes EC, Chirivella M, Rodriguez DM, Beltran M et al.16.  2006. Molecular evolution of dengue 2 virus in Puerto Rico: positive selection in the viral envelope accompanies clade reintroduction. J. Gen. Virol. 87:885–93 [Google Scholar]
  17. Burke DS, Nisalak A, Johnson DE, Scott RM. 17.  1988. A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 38:172–80 [Google Scholar]
  18. 18. CDC 1986. Epidemiologic notes and reports Aedes albopictus introduction—Texas. MMWR 35:141–42 [Google Scholar]
  19. Chew A, Leng GA, Yuen H, Teik KO, Kiat LY et al.19.  1961. A haemorrhagic fever in Singapore. Lancet 1:307–10 [Google Scholar]
  20. Cologna R, Armstrong PM, Rico-Hesse R. 20.  2005. Selection for virulent dengue viruses occurs in humans and mosquitoes. J. Virol. 79:853–59 [Google Scholar]
  21. Cologna R, Rico-Hesse R. 21.  2003. American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J. Virol. 77:3929–38 [Google Scholar]
  22. Colwell RR, Epstein PR, Gubler D, Maynard N, McMichael AJ et al.22.  1998. Climate change and human health. Science 279:968–69 [Google Scholar]
  23. Cummings DA, Irizarry RA, Huang NE, Endy TP, Nisalak A et al.23.  2004. Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature. 427:344–47 [Google Scholar]
  24. Cummings DA, Schwartz IB, Billings L, Shaw LB, Burke DS. 24.  2005. Dynamic effects of antibody-dependent enhancement on the fitness of viruses. Proc. Natl. Acad. Sci. USA 102:15259–64 [Google Scholar]
  25. Diallo M, Ba Y, Sall AA, Diop OM, Ndione JA et al.25.  2003. Amplification of the sylvatic cycle of dengue virus type 2, Senegal, 1999–2000: entomologic findings and epidemiologic considerations. Emerg. Infect. Dis. 9:362–67 [Google Scholar]
  26. Diallo M, Sall AA, Moncayo AC, Ba Y, Fernandez Z et al.26.  2005. Potential role of sylvatic and domestic African mosquito species in dengue emergence. Am. J. Trop. Med. Hyg. 73:445–49 [Google Scholar]
  27. Diaz FJ, Black WC, Farfan-Ale JA, Lorono-Pino MA, Olson KE, Beaty BJ. 27.  2006. Dengue virus circulation and evolution in Mexico: a phylogenetic perspective. Arch. Med. Res. 37:760–73 [Google Scholar]
  28. Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M et al.28.  2005. Dengue fever, Hawaii, 2001–2002. Emerg. Infect. Dis. 11:742–49 [Google Scholar]
  29. Endy TP, Chunsuttiwat S, Nisalak A, Libraty DH, Green S et al.29.  2002. Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am. J. Epidemiol. 156:40–51 [Google Scholar]
  30. Failloux AB, Vazeille M, Rodhain F. 30.  2002. Geographic genetic variation in populations of the dengue virus vector. Aedes aegypti. J. Mol. Evol. 55:653–63 [Google Scholar]
  31. Ferguson N, Anderson R, Gupta S. 31.  1999. The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. USA 96:790–94 [Google Scholar]
  32. Fernandez-Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z. 32.  2004. TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens 64:469–72 [Google Scholar]
  33. Focks D, Barrera R. 33.  2007. Dengue transmission dynamics: assessment and implications for control. Report of the Scientific Working Group Meeting on Dengue92–108 Geneva: WHO [Google Scholar]
  34. Focks DA, Brenner RJ, Hayes J, Daniels E. 34.  2000. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am. J. Trop. Med. Hyg. 62:11–18 [Google Scholar]
  35. Focks DA, Chadee DD. 35.  1997. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am. J. Trop. Med. Hyg. 56:159–67 [Google Scholar]
  36. Focks DA, Daniels E, Haile DG, Keesling JE. 36.  1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am. J. Trop. Med. Hyg. 53:489–506Developed weather-driven simulation model of urban dengue transmission that allows customization by input of location-specific parameters such as human demographics, herd immunity, and mosquito density. [Google Scholar]
  37. Fox J, Elveback L, Scott W, Gatewood L, Ackerman E. 37.  1971. Herd immunity: basic concept and relevance to public health immunization practices. Am. J. Hyg. 94:179–89 [Google Scholar]
  38. Gamble J, Bethell D, Day NP, Loc PP, Phu NH et al.38.  2000. Age-related changes in microvascular permeability: a significant factor in the susceptibility of children to shock?. Clin. Sci. 98:211–16 [Google Scholar]
  39. Graham RR, Juffrie M, Tan R, Hayes CG, Laksono I et al.39.  1999. A prospective seroepidemiologic study on dengue in children four to nine years of age in Yogyakarta, Indonesia. I. Studies in 1995–1996. Am. J. Trop. Med. Hyg. 61:412–19 [Google Scholar]
  40. Gratz NG. 40.  2004. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18:215–27 [Google Scholar]
  41. Gubler DJ. 41.  1989. Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Charles Franklin Craig Lecture. Am. J. Trop. Med. Hyg. 40:571–78 [Google Scholar]
  42. Gubler DJ. 42.  1997. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. See Ref. 45 1–22Comprehensive review of the historical incidence of dengue and reasons for its dramatic expansion shortly after World War II.
  43. Gubler DJ. 43.  1998. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11:480–96 [Google Scholar]
  44. Gubler DJ, Clark GG. 44.  1996. Community involvement in the control of Aedes aegypti. Acta Trop. 61:169–79 [Google Scholar]
  45. 45.  Gubler DJ, Kuno G. 1997. Dengue and Dengue Hemorrhagic Fever Wallingford, UK: CAB International
  46. Gubler DJ, Meltzer M. 46.  1999. Impact of dengue/dengue hemorrhagic fever on the developing world. Adv. Virus Res. 53:35–70 [Google Scholar]
  47. Gubler DJ, Nalim S, Tan R, Saipan H, Sulianti Saroso J. 47.  1979. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am. J. Trop. Med. Hyg. 28:1045–52 [Google Scholar]
  48. Gubler DJ, Rosen L. 48.  1976. Variation among geographic strains of Aedes albopictus in susceptibility to infection with dengue viruses. Am. J. Trop. Med. Hyg. 25:318–25 [Google Scholar]
  49. Gunther J, Martinez-Munoz JP, Perez-Ishiwara DG, Salas-Benito J. 49.  2007. Evidence of vertical transmission of dengue virus in two endemic localities in the state of Oaxaca, Mexico. Intervirology 50:347–52 [Google Scholar]
  50. Guzman M, Pelaez O, Kouri G, Quintana I, Vazquez S et al.50.  2006. Caracterizacion final y lecciones de la epidemia de dengue 3 en Cuba, 2001–2002. Rev. Panam. Salud Publica 19:282–89 [Google Scholar]
  51. Guzman MG, Alvarez M, Rodriguez-Roche R, Bernardo L, Montes T et al.51.  2007. Neutralizing antibodies after infection with dengue 1 virus. Emerg. Infect. Dis. 13:282–86 [Google Scholar]
  52. Guzman MG, Kouri G, Bravo J, Valdes L, Vazquez S, Halstead SB. 52.  2002. Effect of age on outcome of secondary dengue 2 infections. Int. J. Infect. Dis. 6:118–24 [Google Scholar]
  53. Guzman MG, Kouri G, Valdes L, Bravo J, Vazquez S, Halstead SB. 53.  2002. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev. Panam. Salud Publica 11:223–27 [Google Scholar]
  54. Hales S, de Wet N, Maindonald J, Woodward A. 54.  2002. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–34 [Google Scholar]
  55. Halstead S. 55.  1997. Epidemiology of dengue and dengue hemorrhagic fever. See Ref. 45 23–44
  56. Halstead SB. 56.  2007. Dengue. Lancet 370:1644–52 [Google Scholar]
  57. Halstead SB. 57.  2008. Dengue virus-mosquito interactions. Annu. Rev. Entomol. 53:273–91 [Google Scholar]
  58. Halstead SB, Nimmannitya S, Cohen SN. 58.  1970. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J. Biol. Med. 42:311–28One of the first studies to document enhanced disease during secondary DENV infection. [Google Scholar]
  59. Halstead SB, Streit TG, Lafontant JG, Putvatana R, Russell K et al.59.  2001. Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am. J. Trop. Med. Hyg. 65:180–83 [Google Scholar]
  60. Hammon WM, Rudnick A, Sather GE. 60.  1960. Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science 131:1102–3 [Google Scholar]
  61. Hammond SN, Balmaseda A, Perez L, Tellez Y, Saborio SI et al.61.  2005. Differences in dengue severity in infants, children, and adults in a 3-year hospital-based study in Nicaragua. Am. J. Trop. Med. Hyg. 73:1063–70 [Google Scholar]
  62. Harris E, Videa E, Perez L, Sandoval E, Tellez Y et al.62.  2000. Clinical, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua. Am. J. Trop. Med. Hyg. 63:5–11 [Google Scholar]
  63. Hawley WA, Reiter P, Copeland RS, Pumpuni CB, Craig GB Jr. 63.  1987. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236:1114–16First description of the means of transport and origin ofA. albopictus in the United States. [Google Scholar]
  64. Holmes EC, Twiddy SS. 64.  2003. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 3:19–28Comprehensive discussion of DENV evolution. [Google Scholar]
  65. Holmes EC, Worobey M, Rambaut A. 65.  1999. Phylogenetic evidence for recombination in dengue virus. Mol. Biol. Evol. 16:405–9 [Google Scholar]
  66. Hombach J. 66.  2007. Vaccines against dengue: a review of current candidate vaccines at advanced development stages. Rev. Panam. Salud Publica 21:254–60 [Google Scholar]
  67. Hotta S. 67.  1952. Experimental studies on dengue. I. Isolation, identification and modification of the virus. J. Infect. Dis. 90:1–9 [Google Scholar]
  68. Innis B. 68.  1997. Antibody responses to dengue virus infection. See Ref. 45 221–44
  69. Jumali, Sunarto, Gubler DJ, Nalim S, Eram S, Sulianti Saroso J. 69.  1979. Epidemic dengue hemorrhagic fever in rural Indonesia. III. Entomological studies. Am. J. Trop. Med. Hyg. 28:717–24 [Google Scholar]
  70. Kambhampati S, Black WC, Rai KS. 70.  1991. Geographic origin of the US and Brazilian Aedes albopictus inferred from allozyme analysis. Heredity 67:Pt. 185–93 [Google Scholar]
  71. Keller TH, Chen YL, Knox JE, Lim SP, Ma NL et al.71.  2006. Finding new medicines for flaviviral targets. Novartis Found. Symp. 277:102–14 [Google Scholar]
  72. Knudsen AB, Slooff R. 72.  1992. Vector-borne disease problems in rapid urbanization: new approaches to vector control. Bull. WHO 70:1–6 [Google Scholar]
  73. Kochel TJ, Watts DM, Halstead SB, Hayes CG, Espinoza A et al.73.  2002. Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. Lancet 360:310–12 [Google Scholar]
  74. Kouri G, Guzman MG, Valdes L, Carbonel I, del Rosario D et al.74.  1998. Reemergence of dengue in Cuba: a 1997 epidemic in Santiago de Cuba. Emerg. Infect. Dis. 4:89–92 [Google Scholar]
  75. Kouri GP, Guzman MG, Bravo JR, Triana C. 75.  1989. Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic; 1981. Bull. WHO 67:375–80 [Google Scholar]
  76. Kuno G. 76.  1997. Factors influencing the transmission of dengue viruses. See Ref. 45 61–88
  77. Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB. 77.  1998. Phylogeny of the genus Flavivirus. J. Virol. 72:73–83 [Google Scholar]
  78. Kurane I, Ennis FE. 78.  1992. Immunity and immunopathology in dengue virus infections. Semin. Immunol. 4:121–27 [Google Scholar]
  79. Lanciotti RS, Gubler DJ, Trent DW. 79.  1997. Molecular evolution and phylogeny of dengue-4 viruses. J. Gen. Virol. 78:Pt. 92279–84 [Google Scholar]
  80. Lanciotti RS, Lewis JG, Gubler DJ, Trent DW. 80.  1994. Molecular evolution and epidemiology of dengue-3 viruses. J. Gen. Virol. 75:Pt. 165–75 [Google Scholar]
  81. Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I et al.81.  1999. Dengue virus structural differences that correlate with pathogenesis. J. Virol. 73:4738–47First demonstration of the molecular basis of enhanced virulence of Southeast Asian DENV2 viruses. [Google Scholar]
  82. Lewis JA, Chang GJ, Lanciotti RS, Kinney RM, Mayer LW et al.82.  1993. Phylogenetic relationships of dengue-2 viruses. Virology 197:216–24 [Google Scholar]
  83. Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S et al.83.  2002. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J. Infect. Dis. 185:1213–21 [Google Scholar]
  84. Lofgren CS, Ford HR, Tonn RJ, Jatanasen S. 84.  1970. The effectiveness of ultralow-volume applications of malathion at a rate of 6 US fluid ounces per acre in controlling Aedes aegypti in a large-scale test at Nakhon Sawan, Thailand. Bull. WHO 42:15–25 [Google Scholar]
  85. de Lourenco, Oliveira R, Vazeille M, de Filippis AM, Failloux AB. 85.  2003. Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of Aedes albopictus from Brazil, the United States, and the Cayman Islands. Am. J. Trop. Med. Hyg. 69:105–14 [Google Scholar]
  86. McCall P, Kittayapong P. 86.  2007. Control of dengue vectors: tools and strategies. Report of the Scientific Working Group Meeting on Dengue110–19 Geneva: WHO [Google Scholar]
  87. Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM. 87.  2003. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg. Infect. Dis. 9:800–9First demonstration of a clade replacement event in DENV3 linked to emergence of DHF/DSS. [Google Scholar]
  88. Messer WB, Vitarana UT, Sivananthan K, Elvtigala J, Preethimala LD et al.88.  2002. Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 66:765–73 [Google Scholar]
  89. Mitchell CJ, Miller BR, Gubler DJ. 89.  1987. Vector competence of Aedes albopictus from Houston, Texas, for dengue serotypes 1 to 4, yellow fever and Ross River viruses. J. Am. Mosq. Control Assoc. 3:460–65 [Google Scholar]
  90. Moncayo AC, Fernandez Z, Ortiz D, Diallo M, Sall A et al.90.  2004. Dengue emergence and adaptation to peridomestic mosquitoes. Emerg. Infect. Dis. 10:1790–96 [Google Scholar]
  91. Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N et al.91.  2003. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9:921–27 [Google Scholar]
  92. Mongkolsapaya J, Duangchinda T, Dejnirattisai W, Vasanawathana S, Avirutnan P et al.92.  2006. T cell responses in dengue hemorrhagic fever: Are cross-reactive T cells suboptimal. J. Immunol. 176:3821–29 [Google Scholar]
  93. Murgue B, Roche C, Chungue E, Deparis X. 93.  2000. Prospective study of the duration and magnitude of viraemia in children hospitalised during the 1996–1997 dengue-2 outbreak in French Polynesia. J. Med. Virol. 60:432–38 [Google Scholar]
  94. Nene V, Wortman JR, Lawson D, Haas B, Kodira C et al.94.  2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–23 [Google Scholar]
  95. Newton EA, Reiter P. 95.  1992. A model of the transmission of dengue fever with an evaluation of the impact of ultralow volume (ULV) insecticide applications on dengue epidemics. Am. J. Trop. Med. Hyg. 47:709–20 [Google Scholar]
  96. Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U et al.96.  2003. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am. J. Trop. Med. Hyg. 68:191–202 [Google Scholar]
  97. Ooi EE, Goh KT, Gubler DJ. 97.  2006. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis. 12:887–93 [Google Scholar]
  98. 98. PAHO 1994. Dengue and Dengue Hemorrhagic Fever in the Americas: Guidelines for Prevention and Control Washington, DC: Pan American Health Organization
  99. Pant CP, Mount GA, Jatanasen S, Mathis HL. 99.  1971. Ultra-low-volume ground aerosols of technical malathion for the control of Aedes aegypti L. Bull. WHO 45:805–17 [Google Scholar]
  100. Parks W, Lloyd L. 100.  2004. Planning social mobilization and communication for dengue fever prevention and control: a step-by-step guide Geneva: WHO http://www.who.int/tdr/publications/publications/planning_dengue.htm
  101. Patz JA, Martens WJ, Focks DA, Jetten TH. 101.  1998. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ. Health Perspect. 106:147–53 [Google Scholar]
  102. Pryor MJ, Carr JM, Hocking H, Davidson AD, Li P, Wright PJ. 102.  2001. Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. Am. J. Trop. Med. Hyg. 65:427–34 [Google Scholar]
  103. Quintos F, Lim L, Juliano L, Reyes A, Lacson P. 103.  1954. Hemorrhagic fever observed among children in the Philippines. Philipp. J. Pediatr. 3:1–9 [Google Scholar]
  104. Reiter P. 104.  2001. Climate change and mosquito-borne disease. Environ. Health Perspect. 109:Suppl. 1141–61 [Google Scholar]
  105. 105.  Reuters, “Cuba says dengue outbreak caused deaths, no figures,” Reuters AlertNet, October 27, 2006, http://www.alertnet.org/thenews/newsdesk/N27171520.htm
  106. Rico-Hesse R. 106.  1990. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174:479–93 [Google Scholar]
  107. Rico-Hesse R. 107.  2003. Microevolution and virulence of dengue viruses. Adv. Virus Res. 59:315–41 [Google Scholar]
  108. Rico-Hesse R, Harrison LM, Nisalak A, Vaughn DW, Kalayanarooj S et al.108.  1998. Molecular evolution of dengue type 2 virus in Thailand. Am. J. Trop. Med. Hyg. 58:96–101 [Google Scholar]
  109. Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A et al.109.  1997. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230:244–51First linkage of Southeast Asian DENV2 genotype to enhanced disease in the Americas by phylogenetic analysis. [Google Scholar]
  110. Rigau-Perez JG, Gubler DJ, Vorndam AV, Clark GG. 110.  1997. Dengue: a literature review and case study of travelers from the United States, 1986–1994. J. Travel Med. 4:65–71 [Google Scholar]
  111. Robin Y, Cornet M, Heme G, Gonidec G. 111.  1980. Isolement du virus de la dengue au Sénégal. Ann. Virol. 131E:149–54 [Google Scholar]
  112. Rodhain F, Rosen L. 112.  1997. Mosquito vectors and dengue virus-vector relationships. See Ref. 45 45–60
  113. Romi R. 113.  1995. History and updating on the spread of Aedes albopictus in Italy. Parassitologia 37:99–103 [Google Scholar]
  114. Rosen L. 114.  1977. The Emperor's New Clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 26:337–43 [Google Scholar]
  115. Rosen L, Roseboom LE, Gubler DJ, Lien JC, Chaniotis BN. 115.  1985. Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. Am. J. Trop. Med. Hyg. 34:603–15 [Google Scholar]
  116. Rosen L, Shroyer DA, Tesh RB, Freier JE, Lien JC. 116.  1983. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. Am. J. Trop. Med. Hyg. 32:1108–19 [Google Scholar]
  117. Rosenthal E. 117.  2007. As earth warms up, tropical virus moves to Italy. New York Times December 23, 2007
  118. Rothman AL, Ennis FA. 118.  1999. Immunopathogenesis of dengue hemorrhagic fever. Virology 257:1–6 [Google Scholar]
  119. Rudnick A. 119.  1978. Ecology of dengue virus. Asian J. Infect. Dis. 2:156–60 [Google Scholar]
  120. Rudnick A, Marchette NJ, Garcia R. 120.  1967. Possible jungle dengue—recent studies and hypotheses. Jpn. J. Med. Sci. Biol. 20:Suppl.69–74 [Google Scholar]
  121. Sabin AB. 121.  1950. The dengue group of viruses and its family relationships. Bacteriol. Rev. 14:225–32 [Google Scholar]
  122. Sabin AB, Schlesinger RW. 122.  1945. Production of immunity to dengue with virus modified by propagation in mice. Science 101:640–42 [Google Scholar]
  123. Sakuntabhai A, Turbpaiboon C, Casademont I, Chuansumrit A, Lowhnoo T et al.123.  2005. A variant in the CD209 promoter is associated with severity of dengue disease. Nat. Genet. 37:507–13 [Google Scholar]
  124. Saluzzo JF, Cornet M, Castagnet P, Rey C, Digoutte JP. 124.  1986. Isolation of dengue 2 and dengue 4 viruses from patients in Senegal. Trans. R. Soc. Trop. Med. Hyg. 80:5 [Google Scholar]
  125. Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S et al.125.  1984. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am. J. Epidemiol. 120:653–69 [Google Scholar]
  126. Schnoor JL. 126.  2007. The IPCC fourth assessment. Environ. Sci. Technol. 41:1503 [Google Scholar]
  127. Shurtleff AC, Beasley DW, Chen JJ, Ni H, Suderman MT et al.127.  2001. Genetic variation in the 3′ noncoding region of dengue viruses. Virology 281:75–87 [Google Scholar]
  128. Sierra B, Alegre R, Perez AB, Garcia G, Sturn-Ramirez K et al.128.  2007. HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection. Hum. Immunol. 68:531–40 [Google Scholar]
  129. Sierra B, Garcia G, Perez AB, Morier L, Rodriguez R et al.129.  2002. Long-term memory cellular immune response to dengue virus after a natural primary infection. Int. J. Infect. Dis. 6:125–28 [Google Scholar]
  130. Sierra B, Kouri G, Guzman MG. 130.  2007. Race: a risk factor for dengue hemorrhagic fever. Arch. Virol. 152:533–42 [Google Scholar]
  131. Simmons CP, Dong T, Chau NV, Dung NT, Chau TN et al.131.  2005. Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. J. Virol. 79:5665–75 [Google Scholar]
  132. Slosek J. 132.  1986. Aedes aegypti mosquitoes in the Americas: a review of their interactions with the human population. Soc. Sci. Med. 23:249–57 [Google Scholar]
  133. Smith CE. 133.  1956. The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. J. Trop. Med. Hyg. 59:243–51Early documentation of the distribution of A. aegypti and dengue in Southeast Asia just before the emergence of DHF/DSS. [Google Scholar]
  134. Smith CE.134.  1958. The distribution of antibodies to Japanese encephalitis, dengue, and yellow fever viruses in five rural communities in Malaya. Trans. R. Soc. Trop. Med. Hyg. 52:237–52 [Google Scholar]
  135. Soper FL. 135.  1967. Aedes aegypti and yellow fever. Bull. WHO 36:521–27 [Google Scholar]
  136. Stephens HA, Klaythong R, Sirikong M, Vaughn DW, Green S et al.136.  2002. HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens 60:309–18 [Google Scholar]
  137. Sutherst RW. 137.  2004. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 17:136–73 [Google Scholar]
  138. Tardieux I, Poupel O, Lapchin L, Rodhain F. 138.  1990. Variation among strains of Aedes aegypti in susceptibility to oral infection with dengue virus type 2. Am. J. Trop. Med. Hyg. 43:308–13 [Google Scholar]
  139. Taubes G. 139.  1997. Apocalypse not. Science 278:1004–6 [Google Scholar]
  140. Thein S, Aung MM, Shwe TN, Aye M, Zaw A et al.140.  1997. Risk factors in dengue shock syndrome. Am. J. Trop. Med. Hyg. 56:566–72 [Google Scholar]
  141. Tuntaprasart W, Barbazan P, Nitatpattana N, Rongsriyam Y, Yoksan S, Gonzalez JP. 141.  2003. Seroepidemiological survey among schoolchildren during the 2000–2001 dengue outbreak of Ratchaburi Province, Thailand. Southeast Asian J. Trop. Med. Public Health 34:564–68 [Google Scholar]
  142. Twiddy SS, Holmes EC, Rambaut A. 142.  2003. Inferring the rate and time-scale of dengue virus evolution. Mol. Biol. Evol. 20:122–29 [Google Scholar]
  143. Twiddy SS, Woelk CH, Holmes EC. 143.  2002. Phylogenetic evidence for adaptive evolution of dengue viruses in nature. J. Gen. Virol. 83:1679–89 [Google Scholar]
  144. Vasilakis N, Shell EJ, Fokam EB, Mason PW, Hanley KA et al.144.  2007. Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology 358:402–12 [Google Scholar]
  145. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S et al.145.  2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis. 181:2–9 [Google Scholar]
  146. Vazeille M, Rosen L, Mousson L, Failloux AB. 146.  2003. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from Southeast Asia compared with that of Aedes aegypti. Am. J. Trop. Med. Hyg. 68:203–8 [Google Scholar]
  147. Wang E, Ni H, Xu R, Barrett AD, Watowich SJ et al.147.  2000. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol. 74:3227–34 [Google Scholar]
  148. Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS et al.148.  2007. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316:1738–43 [Google Scholar]
  149. Waterman SH, Novak RJ, Sather GE, Bailey RE, Rios I, Gubler DJ. 149.  1985. Dengue transmission in two Puerto Rican communities in 1982. Am. J. Trop. Med. Hyg. 34:625–32 [Google Scholar]
  150. Watts DM, Porter KR, Putvatana P, Vasquez B, Calampa C et al.150.  1999. Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet 354:1431–34 [Google Scholar]
  151. Wearing HJ, Rohani P. 151.  2006. Ecological and immunological determinants of dengue epidemics. Proc. Natl. Acad. Sci. USA 103:11802–7 [Google Scholar]
  152. Westaway E, Blok J. 152.  1997. Taxonomy and evolutionary relationships of flaviviruses. See Ref. 45 147–73
  153. Whitehead RH, Yuill TM, Gould DJ, Simasathien P. 153.  1971. Experimental infection of Aedes aegypti and Aedes albopictus with dengue viruses. Trans. R. Soc. Trop. Med. Hyg. 65:661–67 [Google Scholar]
  154. Whitehead SS, Blaney JE, Durbin AP, Murphy BR. 154.  2007. Prospects for a dengue virus vaccine. Nat. Rev. Microbiol. 5:518–28 [Google Scholar]
  155. 155. WHO 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control Geneva: WHO, 2nd.
  156. 156. WHO 2000. Strengthening Implementation of the Global Strategy for Dengue Fever/Dengue Haemorrhagic Fever Prevention and Control Presented at Report of the Informal Consultation Geneva, Switzerland
  157. Zanotto PM, Gould EA, Gao GF, Harvey PH, Holmes EC. 157.  1996. Population dynamics of flaviviruses revealed by molecular phylogenies. Proc. Natl. Acad. Sci. USA 93:548–53 [Google Scholar]
  158. Zhang C, Mammen MP Jr, Chinnawirotpisan P, Klungthong C, Rodpradit P et al.158.  2005. Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence. J. Virol. 79:15123–30 [Google Scholar]
  159. Zivna I, Green S, Vaughn DW, Kalayanarooj S, Stephens HA et al.159.  2002. T cell responses to an HLA-B*07-restricted epitope on the dengue NS3 protein correlate with disease severity. J. Immunol. 168:5959–65 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error