This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider (LHC). A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction is the existence of the Higgs boson, a weakly interacting spin-zero agent of electroweak symmetry breaking and the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the 1-TeV energy scale.

Even if a “standard” Higgs boson is found, new physics will be implicated by many questions about the physical world that the Standard Model cannot answer. Some puzzles and possible resolutions are recalled. The LHC moves experiments squarely into the 1-TeV scale, where answers to important outstanding questions will be found.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error