Accurate quantum Monte Carlo calculations of ground states and low-lying excited states of light p-shell nuclei are now possible for realistic nuclear Hamiltonians that fit nucleon-nucleon scattering data. Results for more than 30 different (π;) states, plus isobaric analogs, in ≤ 8 nuclei have been obtained with an excellent reproduction of the experimental energy spectrum. These microscopic calculations show that nuclear structure, including both single-particle and clustering aspects, can be explained starting from elementary two- and three-nucleon interactions. Various density and momentum distributions, electromagnetic form factors, and spectroscopic factors have also been computed, as well as electroweak capture reactions of astrophysical interest.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error