1932

Abstract

The formation and hydrolysis of retinyl esters are key processes in the metabolism of the fat-soluble micronutrient vitamin A. Long-chain acyl esters of retinol are the major chemical form of vitamin A (retinoid) stored in the body. Retinyl esters are found in a variety of tissues and cell types, but most of the total body retinoid is accounted for by the retinyl esters stored in the liver. Thus, these esters represent the major endogenous source of retinoid that can be delivered to peripheral tissues for conversion to biologically active forms. This review summarizes current knowledge about the identity, function, and regulation of the hepatic enzymes potentially involved in catalyzing the hydrolysis of retinyl esters. These enzymes include several known and characterized lipases and carboxylesterases. Although there is accumulating evidence that these enzymes function as retinyl ester hydrolases in vitro, it is not clear which play important physiological roles in hepatic retinyl ester metabolism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.nutr.18.1.259
1998-07-01
2024-05-02
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.nutr.18.1.259
Loading
/content/journals/10.1146/annurev.nutr.18.1.259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error