1932

Abstract

The family of enzymes involved in lipogenesis is a model system for understanding how a cell adapts to dietary energy in the form of carbohydrate versus energy in the form of triacylglycerol. Glucose-6-phosphate dehydrogenase (G6PD) is unique in this group of enzymes in that it participates in multiple metabolic pathways: reductive biosynthesis, including lipogenesis; protection from oxidative stress; and cellular growth. G6PD activity is enhanced by dietary carbohydrates and is inhibited by dietary polyunsaturated fats. These changes in G6PD activity are a consequence of changes in the expression of the G6PD gene. Nutrients can regulate the expression of genes at both transcriptional and posttranscriptional steps. Most lipogenic enzymes undergo large changes in the rate of gene transcription in response to dietary changes; however, G6PD is regulated at a step subsequent to transcription. This step is involved in the rate of synthesis of the mature mRNA in the nucleus, specifically regulation of the efficiency of splicing of the nascent G6PD transcript. Understanding the mechanisms by which nutrients alter nuclear posttranscriptional events will help uncover new information on the breadth of mechanisms involved in gene regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.nutr.21.1.121
2001-07-01
2024-05-02
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.nutr.21.1.121
Loading
/content/journals/10.1146/annurev.nutr.21.1.121
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error