Heme oxygenases (HO) catabolize free heme, that is, iron (Fe) protoporphyrin (IX), into equimolar amounts of Fe2+, carbon monoxide (CO), and biliverdin. The stress-responsive HO-1 isoenzyme affords protection against programmed cell death. The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme and prevent it from sensitizing cells to undergo programmed cell death. This cytoprotective effect inhibits the pathogenesis of a variety of immune-mediated inflammatory diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Tenhunen R, Marver HS, Schmid R. 1.  1968. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA 61:748 [Google Scholar]
  2. Wilks A. 2.  2002. Heme oxygenase: evolution, structure, and mechanism. Antioxid. Redox Signal. 4:603–14 [Google Scholar]
  3. Li C, Stocker R. 3.  2009. Heme oxygenase and iron: from bacteria to humans. Redox Rep. 14:95–101 [Google Scholar]
  4. Fenton HJH.4.  1894. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. (Lond.) 65:899–910 [Google Scholar]
  5. Soares MP, Bach FH. 5.  2009. Heme oxygenase-1: from biology to therapeutic potential. Trends Mol. Med. 15:50–58 [Google Scholar]
  6. Eisenstein RS, Garcia MD, Pettingell W, Munro HN. 6.  1991. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc. Natl. Acad. Sci. USA 88:688–92 [Google Scholar]
  7. Harrison PM, Arosio P. 7.  1996. Ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta Bioenerg. 1275:161–203 [Google Scholar]
  8. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. 8.  1987. Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–46 [Google Scholar]
  9. Singleton JW, Laster L. 9.  1965. Biliverdin reductase of guinea pig liver. J. Biol. Chem. 240:4780–89 [Google Scholar]
  10. Kapitulnik J, Maines MD. 10.  2009. Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol. Sci. 30:129–37 [Google Scholar]
  11. Piantadosi CA. 11.  2008. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic. Biol. Med. 45:562–69 [Google Scholar]
  12. Otterbein LE, Soares MP, Yamashita K, Bach FH. 12.  2003. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24:449–55 [Google Scholar]
  13. Lin Q, Weis S, Yang G, Weng YH, Helston R. 13.  et al. 2007. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J. Biol. Chem. 282:20621–33 [Google Scholar]
  14. Panchenko MV, Farber HW, Korn JH. 14.  2000. Induction of heme oxygenase-1 by hypoxia and free radicals in human dermal fibroblasts. Am. J. Physiol. Cell Physiol. 278:C92–101 [Google Scholar]
  15. Christou H, Bailey N, Kluger MS, Mitsialis SA, Kourembanas S. 15.  2005. Extracellular acidosis induces heme oxygenase-1 expression in vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 288:H2647–52 [Google Scholar]
  16. Dennery PA, Rodgers PA, Lum MA, Jennings BC, Shokoohi V. 16.  1996. Hyperoxic regulation of lung heme oxygenase in neonatal rats. Pediatr. Res. 40:815–21 [Google Scholar]
  17. Alam J, Cai J, Smith A. 17.  1994. Isolation and characterization of the mouse heme oxygenase-1 gene. Distal 5′ sequences are required for induction by heme or heavy metals. J. Biol. Chem. 269:1001–9 [Google Scholar]
  18. Alam J, Camhi S, Choi AM. 18.  1995. Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J. Biol. Chem. 270:11977–84 [Google Scholar]
  19. Alam J, Cook JL. 19.  2007. How many transcription factors does it take to turn on the heme oxygenase-1 gene?. Am. J. Respir. Cell Mol. Biol. 36:166–74 [Google Scholar]
  20. Choi AM, Alam J. 20.  1996. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am. J. Respir. Cell Mol. Biol. 15:9–19 [Google Scholar]
  21. Pamplona A, Ferreira A, Balla J, Jeney V, Balla G. 21.  et al. 2007. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat. Med. 13:703–10 [Google Scholar]
  22. Ferreira A, Balla J, Jeney V, Balla G, Soares MP. 22.  2008. A central role for free heme in the pathogenesis of severe malaria: the missing link?. J. Mol. Med. 86:1097–111 [Google Scholar]
  23. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K. 23.  et al. 1992. Ferritin: a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 267:18148–53 [Google Scholar]
  24. Poss KD, Tonegawa S. 24.  1997. Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. USA 94:10925–30 [Google Scholar]
  25. Bishop A, Yet SF, Lee ME, Perrella MA, Demple B. 25.  2004. A key role for heme oxygenase-1 in nitric oxide resistance in murine motor neurons and glia. Biochem. Biophys. Res. Commun. 325:3–9 [Google Scholar]
  26. Yet SF, Layne MD, Liu X, Chen YH, Ith B. 26.  et al. 2003. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J. 17:1759–61 [Google Scholar]
  27. Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C. 27.  et al. 2001. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 20:2835–43 [Google Scholar]
  28. Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M. 28.  et al. 2007. Heme induces ubiquitination and degradation of the transcription factor Bach1. Mol. Cell Biol. 27:6962–71 [Google Scholar]
  29. Hira S, Tomita T, Matsui T, Igarashi K, Ikeda-Saito M. 29.  2007. Bach1, a heme-dependent transcription factor, reveals presence of multiple heme binding sites with distinct coordination structure. IUBMB Life 59:542–51 [Google Scholar]
  30. Ishikawa M, Numazawa S, Yoshida T. 30.  2005. Redox regulation of the transcriptional repressor Bach1. Free Radic. Biol. Med. 38:1344–52 [Google Scholar]
  31. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. 31.  1999. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 274:26071–78 [Google Scholar]
  32. Sun J, Hoshino H, Takaku K, Nakajima O, Muto A. 32.  et al. 2002. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 21:5216–24 [Google Scholar]
  33. Yoshida C, Tokumasu F, Hohmura KI, Bungert J, Hayashi N. 33.  et al. 1999. Long range interaction of cis-DNA elements mediated by architectural transcription factor Bach1. Genes Cells 4:643–55 [Google Scholar]
  34. Sikorski EM, Hock T, Hill-Kapturczak N, Agarwal A. 34.  2004. The story so far: molecular regulation of the heme oxygenase-1 gene in renal injury. Am. J. Physiol. Renal Physiol. 286:F425–41 [Google Scholar]
  35. Exner M, Minar E, Wagner O, Schillinger M. 35.  2004. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic. Biol. Med. 37:1097–104 [Google Scholar]
  36. Abraham NG, Kappas A. 36.  2008. Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev. 60:79–127 [Google Scholar]
  37. Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP. 37.  et al. 2003. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol. Rev. 55:551–71 [Google Scholar]
  38. Bach FH. 38.  2005. Heme oxygenase-1: a therapeutic amplification funnel. FASEB J. 19:1216–19 [Google Scholar]
  39. Yet SF, Perrella MA, Layne MD, Hsieh CM, Maemura K. 39.  et al. 1999. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J. Clin. Invest. 103:R23–29 [Google Scholar]
  40. Zenclussen AC, Schumacher A, Zenclussen ML, Wafula P, Volk HD. 40.  2007. Immunology of pregnancy: cellular mechanisms allowing fetal survival within the maternal uterus. Expert Rev. Mol. Med. 9:1–14 [Google Scholar]
  41. Bainbridge SA, Smith GN. 41.  2005. HO in pregnancy. Free Radic. Biol. Med. 38:979–88 [Google Scholar]
  42. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H. 42.  et al. 1999. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103:129–35 [Google Scholar]
  43. Kimpara T, Takeda A, Watanabe K, Itoyama Y, Ikawa S. 43.  et al. 1997. Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its application in association studies with Alzheimer and Parkinson disease. Hum. Genet. 100:145–47 [Google Scholar]
  44. Hirai H, Kubo H, Yamaya M, Nakayama K, Numasaki M. 44.  et al. 2003. Microsatellite polymorphism in heme oxygenase-1 gene promoter is associated with susceptibility to oxidant-induced apoptosis in lymphoblastoid cell lines. Blood 102:1619–21 [Google Scholar]
  45. Denschlag D, Marculescu R, Unfried G, Hefler LA, Exner M. 45.  et al. 2004. The size of a microsatellite polymorphism of the haem oxygenase 1 gene is associated with idiopathic recurrent miscarriage. Mol. Hum. Reprod. 10:211–14 [Google Scholar]
  46. Zenclussen AC, Lim E, Knoeller S, Knackstedt M, Hertwig K. 46.  et al. 2003. Heme oxygenases in pregnancy II: HO-2 is downregulated in human pathologic pregnancies. Am. J. Reprod. Immunol. 50:66–76 [Google Scholar]
  47. Abraham NG. 47.  2003. Therapeutic applications of human heme oxygenase gene transfer and gene therapy. Curr. Pharm. Des. 9:2513–24 [Google Scholar]
  48. Shen XD, Ke B, Zhai Y, Gao F, Busuttil RW. 48.  et al. 2005. Toll-like receptor and heme oxygenase-1 signaling in hepatic ischemia/reperfusion injury. Am. J. Transpl. 5:1793–800 [Google Scholar]
  49. Kruger B, Krick S, Dhillon N, Lerner SM, Ames S. 49.  et al. 2009. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl. Acad. Sci. USA 106:3390–95 [Google Scholar]
  50. Grosser N, Abate A, Oberle S, Vreman HJ, Dennery PA. 50.  et al. 2003. Heme oxygenase-1 induction may explain the antioxidant profile of aspirin. Biochem. Biophys. Res. Commun. 308:956–60 [Google Scholar]
  51. Grosser N, Hemmerle A, Berndt G, Erdmann K, Hinkelmann U. 51.  et al. 2004. The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic. Biol. Med. 37:2064–71 [Google Scholar]
  52. Deng YM, Wu BJ, Witting PK, Stocker R. 52.  2004. Probucol protects against smooth muscle cell proliferation by upregulating heme oxygenase-1. Circulation 110:1855–60 [Google Scholar]
  53. Ali F, Hamdulay SS, Kinderlerer AR, Boyle JJ, Lidington EA. 53.  et al. 2007. Statin-mediated cytoprotection of human vascular endothelial cells: a role for Kruppel-like factor 2-dependent induction of heme oxygenase-1. J. Thromb. Haemost. 5:2537–46 [Google Scholar]
  54. Visner GA, Lu F, Zhou H, Liu J, Kazemfar K, Agarwal A. 54.  2003. Rapamycin induces heme oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin. Circulation 107:911–16 [Google Scholar]
  55. Lee TS, Chau LY. 55.  2002. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat. Med. 8:240–46 [Google Scholar]
  56. Lee TS, Tsai HL, Chau LY. 56.  2003. Induction of heme oxygenase-1 expression in murine macrophages is essential for the anti-inflammatory effect of low dose 15-deoxy-Delta 12,14-prostaglandin J2. J. Biol. Chem. 278:19325–30 [Google Scholar]
  57. Soares MP. 57.  2004. VEGF: Is it just an inducer of heme oxygenase-1 expression?. Blood 103:751 [Google Scholar]
  58. Bussolati B, Ahmed A, Pemberton H, Landis RC, Di Carlo F. 58.  et al. 2004. Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocytic infiltration. Blood 103:761–66 [Google Scholar]
  59. Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H. 59.  et al. 2007. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J. Exp. Med. 204:605–18 [Google Scholar]
  60. Grosser N, Schroder H. 60.  2004. Therapy with NO donors-antiatherogenic and antioxidant actions. Herz 29:116–22 In German) [Google Scholar]
  61. Salinas M, Diaz R, Abraham NG, Ruiz de Galarreta CM, Cuadrado A. 61.  2003. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J. Biol. Chem. 278:13898–904 [Google Scholar]
  62. Chung SW, Liu X, Macias AA, Baron RM, Perrella MA. 62.  2008. Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J. Clin. Invest. 118:239–47 [Google Scholar]
  63. Takamiya R, Hung CC, Hall SR, Fukunaga K, Nagaishi T. 63.  et al. 2009. High mobility group box 1 contributes to lethality of endotoxemia in heme oxygenase-1 deficient mice. Am. J. Respir. Cell Mol. Biol. 41:129–35 [Google Scholar]
  64. Soares MP, Marguti I, Cunha A, Larsen R. 64.  2009. Immunoregulatory effects of HO-1: How does it work?. Curr. Opin. Pharmacol. 9:482–89 [Google Scholar]
  65. Zelenay S, Chora A, Soares MP, Demengeot J. 65.  2007. Heme oxygenase-1 is not required for mouse regulatory T cell development and function. Int. Immunol. 19:11–18 [Google Scholar]
  66. Tzima S, Victoratos P, Kranidioti K, Alexiou M, Kollias G. 66.  2009. Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production. J. Exp. Med. 206:1167–79 [Google Scholar]
  67. Wiesel P, Patel AP, DiFonzo N, Marria PB, Sim CU. 67.  et al. 2000. Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice. Circulation 102:3015–22 [Google Scholar]
  68. Vile GF, Basumodak S, Waltner C, Tyrrell RM. 68.  1994. Heme oxygenase mediates an adaptive response to oxidative stress in human skin fibroblasts. Proc. Natl. Acad. Sci. USA 91:2607–10 [Google Scholar]
  69. Reeve VE, Tyrrell RM. 69.  1999. Heme oxygenase induction mediates the photoimmunoprotective activity of UVA radiation in the mouse. Proc. Natl. Acad. Sci. USA 96:9317–21 [Google Scholar]
  70. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. 70.  1999. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17:331–67 [Google Scholar]
  71. Hengartner MO. 71.  2000. The biochemistry of apoptosis. Nature 407:770–76 [Google Scholar]
  72. Hengartner MO, Horvitz HR. 72.  1994. Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 4:581–86 [Google Scholar]
  73. Fiers W, Beyaert R, Declercq W, Vandenabeele P. 73.  1999. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–30 [Google Scholar]
  74. Kerr JF, Wyllie AH, Currie AR. 74.  1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–57 [Google Scholar]
  75. Soares MP, Lin Y, Anrather J, Csizmadia E, Takigami K. 75.  et al. 1998. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat. Med. 4:1073–77 [Google Scholar]
  76. Ke B, Buelow R, Shen XD, Melinek J, Amersi F. 76.  et al. 2002. Heme oxygenase 1 gene transfer prevents CD95/Fas ligand-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway. Hum. Gene Ther. 13:1189–99 [Google Scholar]
  77. Soares MP, Usheva A, Brouard S, Berberat PO, Gunther L. 77.  et al. 2002. Modulation of endothelial cell apoptosis by heme oxygenase-1-derived carbon monoxide. Antiox. Redox Signal. 4:321–29 [Google Scholar]
  78. Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH. 78.  et al. 2000. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J. Exp. Med. 192:1015–26 [Google Scholar]
  79. Tartaglia LA, Rothe M, Hu YF, Goeddel DV. 79.  1993. Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell 73:213–16 [Google Scholar]
  80. Soares MP, Seldon MP, Gregoire IP, Vassilevskaia T, Berberat PO. 80.  et al. 2004. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J. Immunol. 172:3553–63 [Google Scholar]
  81. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C. 81.  et al. 2008. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc. Natl. Acad. Sci. USA 105:11778–83 [Google Scholar]
  82. Micheau O, Tschopp J. 82.  2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–90 [Google Scholar]
  83. Perkins ND. 83.  2007. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8:49–62 [Google Scholar]
  84. Baeuerle PA, Baltimore D. 84.  1988. IkB: a specific inhibitor of the NF-kB transcription factor. Science 242:540–46 [Google Scholar]
  85. Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U. 85.  1995. Control of IkB-a proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–88 [Google Scholar]
  86. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D. 86.  et al. 1995. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–97 [Google Scholar]
  87. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA. 87.  1993. Rapid proteolysis of IkBa is necessary for activation of transcription factor NF-kB. Nature 365:182–85 [Google Scholar]
  88. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr. 88.  1998. NF-kB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–83 [Google Scholar]
  89. Beg AA, Baltimore D. 89.  1996. An essential role for NF-kB in preventing TNF-a-induced cell death. Science 274:782–84 [Google Scholar]
  90. Soares MP, Muniappan A, Kaczmarek E, Koziak K, Wrighton CJ. 90.  et al. 1998. Adenovirus-mediated expression of a dominant negative mutant of p65/RelA inhibits proinflammatory gene expression in endothelial cells without sensitizing to apoptosis. J. Immunol. 161:4572–82 [Google Scholar]
  91. Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP. 91.  2002. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J. Biol. Chem. 277:17950–61 [Google Scholar]
  92. Seldon MP, Silva G, Pejanovic N, Larsen R, Gregoire IP. 92.  et al. 2007. Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-{kappa}B RelA phosphorylation at serine 276. J. Immunol. 179:7840–51 [Google Scholar]
  93. Zhong H, Voll RE, Ghosh S. 93.  1998. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1:661–71 [Google Scholar]
  94. Anrather J, Csizmadia V, Soares MP, Winkler H. 94.  1999. Regulation of NF-kB RelA phosphorylation and transcriptional activity by p21(ras) and protein kinase C z in primary endothelial cells. J. Biol. Chem. 274:13594–603 [Google Scholar]
  95. Anrather J, Racchumi G, Iadecola C. 95.  2005. cis-acting, element-specific transcriptional activity of differentially phosphorylated nuclear factor-kappa B. J. Biol. Chem. 280:244–52 [Google Scholar]
  96. Chen LF, Greene WC. 96.  2004. Shaping the nuclear action of NF-kappaB. Nat. Rev. Mol. Cell Biol. 5:392–401 [Google Scholar]
  97. Li H, Zhu H, Xu CJ, Yuan J. 97.  1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501 [Google Scholar]
  98. Green DR, Kroemer G. 98.  2004. The pathophysiology of mitochondrial cell death. Science 305:626–29 [Google Scholar]
  99. Galonek HL, Hardwick JM. 99.  2006. Upgrading the BCL-2 network. Nat. Cell Biol. 8:1317–19 [Google Scholar]
  100. Riedl SJ, Shi Y. 100.  2004. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5:897–907 [Google Scholar]
  101. Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM. 101.  et al. 2004. P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol. Biol. Cell 15:1059–524 [Google Scholar]
  102. Wada T, Penninger JM. 102.  2004. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–49 [Google Scholar]
  103. Silva G, Cunha A, Gregoire IP, Seldon MP, Soares MP. 103.  2006. The antiapoptotic effect of heme oxygenase-1 in endothelial cells involves the degradation of p38{alpha} MAPK isoform. J. Immunol. 177:1894–903 [Google Scholar]
  104. Arruda MA, Rossi AG, de Freitas MS, Barja-Fidalgo C, Graca-Souza AV. 104.  2004. Heme inhibits human neutrophil apoptosis: involvement of phosphoinositide 3-kinase, MAPK, and NF-kappaB. J. Immunol. 173:2023–30 [Google Scholar]
  105. Zhang X, Shan P, Alam J, Fu XY, Lee PJ. 105.  2005. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J. Biol. Chem. 280:8714–21 [Google Scholar]
  106. Brunt KR, Fenrich KK, Kiani G, Tse MY, Pang SC. 106.  et al. 2006. Protection of human vascular smooth muscle cells from H2O2-induced apoptosis through functional codependence between HO-1 and AKT. Arterioscler. Thromb. Vasc. Biol. 26:2027–34 [Google Scholar]
  107. Salinas M, Wang J, Rosa de Sagarra M, Martin D, Rojo AI. 107.  et al. 2004. Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo. FEBS Lett. 578:90–94 [Google Scholar]
  108. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI. 108.  2004. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system. Hypertension 43:746–51 [Google Scholar]
  109. Katori M, Buelow R, Ke B, Ma J, Coito AJ. 109.  et al. 2002. Heme oxygenase-1 overexpression protects rat hearts from cold ischemia/reperfusion injury via an antiapoptotic pathway. Transplantation 73:287–92 [Google Scholar]
  110. Otterbein LE, Mantell LL, Choi AM. 110.  1999. Carbon monoxide provides protection against hyperoxic lung injury. Am. J. Physiol. Renal Physiol. 276:L688–94 [Google Scholar]
  111. Fujita T, Toda K, Karimova A, Yan SF, Naka Y. 111.  et al. 2001. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat. Med. 7:598–604 [Google Scholar]
  112. Sato K, Balla J, Otterbein L, Smith NR, Brouard S. 112.  et al. 2001. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse to rat cardiac transplants. J. Immunol. 166:4185–94 [Google Scholar]
  113. Akamatsu Y, Haga M, Tyagi S, Yamashita K, Graca-Souza AV. 113.  et al. 2004. Heme oxygenase-1-derived carbon monoxide protects hearts from transplant associated ischemia reperfusion injury. FASEB J. 18:771–72 [Google Scholar]
  114. Mustafa AK, Gadalla MM, Snyder SH. 114.  2009. Signaling by gasotransmitters. Sci. Signal 2:re2 [Google Scholar]
  115. Kim HP, Ryter SW, Choi AM. 115.  2006. CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol. 46:411–49 [Google Scholar]
  116. Zuckerbraun BS, Chin BY, Bilban M, de Costa d'Avila J, Rao J. 116.  et al. 2007. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 21:1099–106 [Google Scholar]
  117. Bilban M, Bach FH, Otterbein SL, Ifedigbo E, de Costa d'Avila J. 117.  et al. 2006. Carbon monoxide orchestrates a protective response through PPARgamma. Immunity 24:601–10 [Google Scholar]
  118. Chin BY, Jiang G, Wegiel B, Wang HJ, Macdonald T. 118.  et al. 2007. Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proc. Natl. Acad. Sci. USA 104:5109–14 [Google Scholar]
  119. Kim KM, Pae HO, Zheng M, Park R, Kim YM, Chung HT. 119.  2007. Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress. Circ. Res. 101:919–27 [Google Scholar]
  120. Todd DJ, Lee AH, Glimcher LH. 120.  2008. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8:663–74 [Google Scholar]
  121. Zuckerbraun BS, Billiar TR, Otterbein SL, Kim PK, Liu F. 121.  et al. 2003. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J. Exp. Med. 198:1707–16 [Google Scholar]
  122. Platt JL, Nath KA. 122.  1998. Heme oxygenase: protective gene or Trojan horse. Nat. Med. 4:1364–65 [Google Scholar]
  123. Baranano DE, Wolosker H, Bae BI, Barrow RK, Snyder SH, Ferris CD. 123.  2000. A mammalian iron ATPase induced by iron. J. Biol. Chem. 275:15166–73 [Google Scholar]
  124. Ferris C, Jaffrey S, Sawa A, Takahashi M, Brady S. 124.  et al. 1999. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat. Cell Biol. 1:152–57 [Google Scholar]
  125. Baker HM, Anderson BF, Baker EN. 125.  2003. Dealing with iron: common structural principles in proteins that transport iron and heme. Proc. Natl. Acad. Sci. USA 100:3579–83 [Google Scholar]
  126. Xie C, Zhang N, Zhou H, Li J, Li Q. 126.  et al. 2005. Distinct roles of basal steady-state and induced H-ferritin in tumor necrosis factor-induced death in L929 cells. Mol. Cell Biol. 25:6673–81 [Google Scholar]
  127. Cozzi A, Levi S, Corsi B, Santambrogio P, Campanella A. 127.  et al. 2003. Role of iron and ferritin in TNFalpha-induced apoptosis in HeLa cells. FEBS Lett. 537:187–92 [Google Scholar]
  128. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J. 128.  et al. 2004. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119:529–42 [Google Scholar]
  129. Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C. 129.  et al. 2003. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J. 17:1724–26 [Google Scholar]
  130. Morse D, Pischke SE, Zhou Z, Davis RJ, Flavell RA. 130.  et al. 2003. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J. Biol. Chem. 278:36993–98 [Google Scholar]
  131. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. 131.  2005. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–61 [Google Scholar]
  132. Temkin V, Karin M. 132.  2007. From death receptor to reactive oxygen species and c-Jun N-terminal protein kinase: the receptor-interacting protein 1 odyssey. Immunol. Rev. 220:8–21 [Google Scholar]
  133. Chang L, Kamata H, Solinas G, Luo JL, Maeda S. 133.  et al. 2006. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–13 [Google Scholar]
  134. Baranano DE, Rao M, Ferris CD, Snyder SH. 134.  2002. Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA 99:16093–98 [Google Scholar]
  135. Maghzal GJ, Leck MC, Collinson E, Li C, Stocker R. 135.  2009. Limited role for the bilirubin-biliverdin redox amplification cycle in the cellular antioxidant protection by biliverdin reductase. J. Biol. Chem. In press [Google Scholar]
  136. Festjens N, Vanden Berghe T, Vandenabeele P. 136.  2006. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta 1757:1371–87 [Google Scholar]
  137. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S. 137.  2000. Necrotic death pathway in Fas receptor signaling. J. Cell Biol. 151:1247–56 [Google Scholar]
  138. Galluzzi L, Kroemer G. 138.  2008. Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–63 [Google Scholar]
  139. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A. 139.  et al. 2008. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–23 [Google Scholar]
  140. Lin Y, Devin A, Rodriguez Y, Liu ZG. 140.  1999. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13:2514–26 [Google Scholar]
  141. Kim YS, Morgan MJ, Choksi S, Liu ZG. 141.  2007. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26:675–87 [Google Scholar]
  142. Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. 142.  2009. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc. Natl. Acad. Sci. USA 106:5171–76 [Google Scholar]
  143. Reiter TA, Pang B, Dedon P, Demple B. 143.  2006. Resistance to nitric oxide-induced necrosis in heme oxygenase-1 overexpressing pulmonary epithelial cells associated with decreased lipid peroxidation. J. Biol. Chem. 281:36603–12 [Google Scholar]
  144. Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD. 144.  et al. 1999. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. USA 96:2445–50 [Google Scholar]
  145. Pachori AS, Smith A, McDonald P, Zhang L, Dzau VJ, Melo LG. 145.  2007. Heme-oxygenase-1-induced protection against hypoxia/reoxygenation is dependent on biliverdin reductase and its interaction with PI3K/Akt pathway. J. Mol. Cell Cardiol. 43:580–92 [Google Scholar]
  146. Fondevila C, Shen XD, Tsuchiyashi S, Yamashita K, Csizmadia E. 146.  et al. 2004. Biliverdin therapy protects rat livers from ischemia and reperfusion injury. Hepatology 40:1333–41 [Google Scholar]
  147. Yamashita K, McDaid J, Ollinger R, Tsui TY, Berberat PO. 147.  et al. 2004. Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts. FASEB J. 18:765–67 [Google Scholar]
  148. Wang H, Lee SS, Dell'agnello C, Tchipashvili V, D'Avilla J. 148.  et al. 2005. Bilirubin can induce tolerance to islet allografts. Endocrinology 147:262–68 [Google Scholar]
  149. Ollinger R, Wang H, Yamashita K, Wegiel B, Thomas M. 149.  et al. 2007. Therapeutic applications of bilirubin and biliverdin in transplantation. Antioxid. Redox Signal. 9:2175–86 [Google Scholar]
  150. Sarady-Andrews JK, Liu F, Gallo D, Nakao A, Overhaus M. 150.  et al. 2005. Biliverdin administration protects against endotoxin-induced acute lung injury in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 289:L1131–37 [Google Scholar]
  151. Overhaus M, Moore BA, Barbato JE, Behrendt FF, Doering JG, Bauer AJ. 151.  2006. Biliverdin protects against polymicrobial sepsis by modulating inflammatory mediators. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G695–703 [Google Scholar]
  152. Ollinger R, Bilban M, Erat A, Froio A, McDaid J. 152.  et al. 2005. Bilirubin: a natural inhibitor of vascular smooth muscle cell proliferation. Circulation 112:1030–39 [Google Scholar]
  153. Aggarwal BB. 153.  2003. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3:745–56 [Google Scholar]
  154. Seixas E, Gozzelino R, Chora A, Ferreira A, Silva G. 154.  et al. 2009. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc. Natl. Acad. Sci. USA 106:15837–42 [Google Scholar]
  155. Medzhitov R. 155.  2009. Damage control in host–pathogen interactions. Proc. Natl. Acad. Sci. USA 106:15525–26 [Google Scholar]
  156. Scaffidi P, Misteli T, Bianchi ME. 156.  2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–95 [Google Scholar]
  157. Laird MD, Wakade C, Alleyne CH Jr, Dhandapani KM. 157.  2008. Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic. Biol. Med. 45:1103–14 [Google Scholar]
  158. Nathan C. 158.  2002. Points of control in inflammation. Nature 420:846–52 [Google Scholar]
  159. Medzhitov R. 159.  2008. Origin and physiological roles of inflammation. Nature 454:4280–35 [Google Scholar]
  160. Schechter AN. 160.  2008. Hemoglobin research and the origins of molecular medicine. Blood 112:3927–38 [Google Scholar]
  161. Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO 3rd. 161.  et al. 2002. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 8:1383–89 [Google Scholar]
  162. Balla J, Jacob HS, Balla G, Nath K, Eaton JW, Vercellotti GM. 162.  1993. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc. Natl. Acad. Sci. USA 90:9285–89 [Google Scholar]
  163. Winterbourn C. 163.  1985. Reactions of superoxide with hemoglobin In CRC Handbook of Methods for Oxygen Radical Research, ed. RA Greenwald, pp. 137–41. Boca Raton, FL: CRC. 447 pp. [Google Scholar]
  164. Miller LH, Baruch DI, Marsh K, Doumbo OK. 164.  2002. The pathogenic basis of malaria. Nature 415:673–79 [Google Scholar]
  165. Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M. 165.  et al. 1995. Indicators of life-threatening malaria in African children. N. Engl. J. Med. 332:1399–404 [Google Scholar]
  166. Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, Vassalli P. 166.  1987. Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237:1210–12 [Google Scholar]
  167. McGuire W, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D. 167.  1994. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 371:508–10 [Google Scholar]
  168. Sinha S, Mishra SK, Sharma S, Patibandla PK, Mallick PK. 168.  et al. 2008. Polymorphisms of TNF-enhancer and gene for FcgammaRIIa correlate with the severity of falciparum malaria in the ethnically diverse Indian population. Malar. J. 7:13 [Google Scholar]
  169. Heinemann IU, Jahn M, Jahn D. 169.  2008. The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474:238–51 [Google Scholar]
  170. Hamilton JW, Bement WJ, Sinclair PR, Sinclair JF, Alcedo JA, Wetterhahn KE. 170.  1991. Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription. Arch. Biochem. Biophys. 289:387–92 [Google Scholar]
  171. Lathrop JT, Timko MP. 171.  1993. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science 259:522–25 [Google Scholar]
  172. Bruns GP, London IM. 172.  1965. The effect of hemin on the synthesis of globin. Biochem. Biophys. Res. Commun. 18:236–42 [Google Scholar]
  173. Graber SG, Woodworth RC. 173.  1986. Myoglobin expression in L6 muscle cells. Role of differentiation and heme. J. Biol. Chem. 261:9150–54 [Google Scholar]
  174. Zhu Y, Sun Y, Jin K, Greenberg DA. 174.  2002. Hemin induces neuroglobin expression in neural cells. Blood 100:2494–98 [Google Scholar]
  175. Tahara SM, Traugh JA, Sharp SB, Lundak TS, Safer B, Merrick WC. 175.  1978. Effect of hemin on site-specific phosphorylation of eukaryotic initiation factor 2. Proc. Natl. Acad. Sci. USA 75:789–93 [Google Scholar]
  176. Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J. 176.  et al. 2006. Identification of a mammalian mitochondrial porphyrin transporter. Nature 443:586–89 [Google Scholar]
  177. Azuma M, Kabe Y, Kuramori C, Kondo M, Yamaguchi Y, Handa H. 177.  2008. Adenine nucleotide translocator transports haem precursors into mitochondria. PLoS ONE 3:e3070 [Google Scholar]
  178. Krishnamurthy P, Schuetz JD. 178.  2006. Role of ABCG2/BCRP in biology and medicine. Annu. Rev. Pharmacol. Toxicol. 46:381–410 [Google Scholar]
  179. Rajagopal A, Rao AU, Amigo J, Tian M, Upadhyay SK. 179.  et al. 2008. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 453:1127–31 [Google Scholar]
  180. Latunde-Dada GO, Simpson RJ, McKie AT. 180.  2006. Recent advances in mammalian haem transport. Trends Biochem. Sci. 31:182–88 [Google Scholar]
  181. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K. 181.  et al. 2005. Identification of an intestinal heme transporter. Cell 122:789–801 [Google Scholar]
  182. Rouault TA. 182.  2005. The intestinal heme transporter revealed. Cell 122:649–51 [Google Scholar]
  183. Krishnamurthy P, Schuetz JD. 183.  2005. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival. Biometals 18:349–58 [Google Scholar]
  184. Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S. 184.  et al. 2004. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J. Biol. Chem. 279:24218–25 [Google Scholar]
  185. Quigley JG, Burns CC, Anderson MM, Lynch ED, Sabo KM. 185.  et al. 2000. Cloning of the cellular receptor for feline leukemia virus subgroup C (FeLV-C), a retrovirus that induces red cell aplasia. Blood 95:1093–99 [Google Scholar]
  186. Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM. 186.  et al. 2004. Identification of a human heme exporter that is essential for erythropoiesis. Cell 118:757–66 [Google Scholar]
  187. Keel SB, Doty RT, Yang Z, Quigley JG, Chen J. 187.  et al. 2008. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319:825–28 [Google Scholar]
  188. Wickrema A, Krantz SB, Winkelmann JC, Bondurant MC. 188.  1992. Differentiation and erythropoietin receptor gene expression in human erythroid progenitor cells. Blood 80:1940–49 [Google Scholar]
  189. Iwahara S, Satoh H, Song DX, Webb J, Burlingame AL. 189.  et al. 1995. Purification, characterization, and cloning of a heme-binding protein (23 kDa) in rat liver cytosol. Biochemistry 34:13398–406 [Google Scholar]
  190. Immenschuh S, Iwahara S, Satoh H, Nell C, Katz N, Muller-Eberhard U. 190.  1995. Expression of the mRNA of heme-binding protein 23 is coordinated with that of heme oxygenase-1 by heme and heavy metals in primary rat hepatocytes and hepatoma cells. Biochemistry 34:13407–11 [Google Scholar]
  191. Immenschuh S, Baumgart-Vogt E. 191.  2005. Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid. Redox Signal. 7:768–77 [Google Scholar]
  192. Rhee SG, Chae HZ, Kim K. 192.  2005. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38:1543–52 [Google Scholar]
  193. Immenschuh S, Nell C, Iwahara S, Katz N, Muller-Eberhard U. 193.  1997. Gene regulation of HBP 23 by metalloporphyrins and protoporphyrin IX in liver and hepatocyte cultures. Biochem. Biophys. Res. Commun. 231:667–70 [Google Scholar]
  194. Egler RA, Fernandes E, Rothermund K, Sereika S, de Souza-Pinto N. 194.  et al. 2005. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene 24:8038–50 [Google Scholar]
  195. Melamed-Frank M, Lache O, Enav BI, Szafranek T, Levy NS. 195.  et al. 2001. Structure-function analysis of the antioxidant properties of haptoglobin. Blood 98:3693–98 [Google Scholar]
  196. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ. 196.  et al. 2001. Identification of the haemoglobin scavenger receptor. Nature 409:198–201 [Google Scholar]
  197. Philippidis P, Mason JC, Evans BJ, Nadra I, Taylor KM. 197.  et al. 2004. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ. Res. 94:119–26 [Google Scholar]
  198. Quaye IK. 198.  2008. Haptoglobin, inflammation and disease. Trans. R. Soc. Trop. Med. Hyg. 102:735–42 [Google Scholar]
  199. Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E. 199.  et al. 2005. Hemoglobin and heme scavenging. IUBMB Life 57:749–59 [Google Scholar]
  200. Rother RP, Bell L, Hillmen P, Gladwin MT. 200.  2005. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293:1653–62 [Google Scholar]
  201. Bunn HF, Jandl JH. 201.  1966. Exchange of heme among hemoglobin molecules. Proc. Natl. Acad. Sci. USA 56:974–78 [Google Scholar]
  202. Paoli M, Anderson BF, Baker HM, Morgan WT, Smith A, Baker EN. 202.  1999. Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two beta-propeller domains. Nat. Struct. Biol. 6:926–31 [Google Scholar]
  203. Fasano M, Fanali G, Leboffe L, Ascenzi P. 203.  2007. Heme binding to albuminoid proteins is the result of recent evolution. IUBMB Life 59:436–40 [Google Scholar]
  204. Allhorn M, Berggard T, Nordberg J, Olsson ML, Akerstrom B. 204.  2002. Processing of the lipocalin alpha(1)-microglobulin by hemoglobin induces heme-binding and heme-degradation properties. Blood 99:1894–901 [Google Scholar]
  205. Miller YI, Shaklai N. 205.  1999. Kinetics of hemin distribution in plasma reveals its role in lipoprotein oxidation. Biochim. Biophys. Acta 1454:153–64 [Google Scholar]
  206. Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK. 206.  2005. Identification of the receptor scavenging hemopexin-heme complexes. Blood 106:2572–79 [Google Scholar]
  207. Eskew JD, Vanacore RM, Sung L, Morales PJ, Smith A. 207.  1999. Cellular protection mechanisms against extracellular heme. Heme-hemopexin, but not free heme, activates the N-terminal c-jun kinase. J. Biol. Chem. 274:638–48 [Google Scholar]
  208. Alam J, Smith A. 208.  1989. Receptor-mediated transport of heme by hemopexin regulates gene expression in mammalian cells. J. Biol. Chem. 264:17637–40 [Google Scholar]
  209. Tolosano E, Hirsch E, Patrucco E, Camaschella C, Navone R. 209.  et al. 1999. Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94:3906–14 [Google Scholar]
  210. Little HN, Neilands JB. 210.  1960. Binding of haematin by human serum albumin. Nature 188:913–15 [Google Scholar]
  211. Akech S, Gwer S, Idro R, Fegan G, Eziefula AC. 211.  et al. 2006. Volume expansion with albumin compared to gelofusine in children with severe malaria: results of a controlled trial. PLoS Clin. Trials 1:e21 [Google Scholar]
  212. Maitland K, Pamba A, English M, Peshu N, Marsh K. 212.  et al. 2005. Randomized trial of volume expansion with albumin or saline in children with severe malaria: preliminary evidence of albumin benefit. Clin. Infect Dis. 40:538–45 [Google Scholar]
  213. Flower DR, North AC, Sansom CE. 213.  2000. The lipocalin protein family: structural and sequence overview. Biochim. Biophys. Acta 1482:9–24 [Google Scholar]
  214. Morgan WT, Liem HH, Sutor RP, Muller-Ebergard U. 214.  1976. Transfer of heme from heme-albumin to hemopexin. Biochim. Biophys. Acta 444:435–45 [Google Scholar]
  215. Balla G, Jacob HS, Eaton JW, Belcher JD, Vercellotti GM. 215.  1991. Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler. Thromb. 11:1700–11 [Google Scholar]
  216. Camejo G, Halberg C, Manschik-Lundin A, Hurt-Camejo E, Rosengren B. 216.  et al. 1998. Hemin binding and oxidation of lipoproteins in serum: mechanisms and effect on the interaction of LDL with human macrophages. J. Lipid Res. 39:755–66 [Google Scholar]
  217. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM. 217.  et al. 2002. Pro-oxidant and cytotoxic effects of circulating heme. Blood 100:879–87 [Google Scholar]
  218. Stocker R, Perrella MA. 218.  2006. Heme oxygenase-1: a novel drug target for atherosclerotic diseases?. Circulation 114:2178–89 [Google Scholar]
  219. Loegering DJ. 219.  1981. Hemolysis following thermal injury and depression of reticuloendothelial system phagocytic function. J. Traumatol. 21:130–34 [Google Scholar]
  220. Hua Y, Keep RF, Hoff JT, Xi G. 220.  2007. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke 38:759–62 [Google Scholar]
  221. An X, Mohandas N. 221.  2008. Disorders of red cell membrane. Br. J. Haematol. 141:367–75 [Google Scholar]
  222. Carrell RW, Winterbourn CC. 222.  1980. The unstable hemoglobins. Tex. Rep. Biol. Med. 40:431–45 [Google Scholar]
  223. Zanella A, Fermo E, Bianchi P, Valentini G. 223.  2005. Red cell pyruvate kinase deficiency: molecular and clinical aspects. Br. J. Haematol. 130:11–25 [Google Scholar]
  224. Tsai HM. 224.  2006. The molecular biology of thrombotic microangiopathy. Kidney Int. 70:16–23 [Google Scholar]
  225. Tsuji A, Tanabe M, Onishi K, Kitamura T, Okinaka T. 225.  et al. 2004. Intravascular hemolysis in aortic stenosis. Intern. Med. 43:935–38 [Google Scholar]
  226. Ellis JT, Wick TM, Yoganathan AP. 226.  1998. Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J. Heart Valve Dis. 7:376–86 [Google Scholar]
  227. Daly JJ, Haeusler MN, Hogan CJ, Wood EM. 227.  2006. Massive intravascular haemolysis with T-activation and disseminated intravascular coagulation due to clostridial sepsis. Br. J. Haematol. 134:553 [Google Scholar]
  228. Vercaemst L. 228.  2008. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J. Extra Corpor. Technol. 40:257–67 [Google Scholar]
  229. Pruss A, Salama A, Ahrens N, Hansen A, Kiesewetter H. 229.  et al. 2003. Immune hemolysis-serological and clinical aspects. Clin. Exp. Med. 3:55–64 [Google Scholar]
  230. Gertz MA. 230.  2006. Cold hemolytic syndrome. Hematol. Am. Soc. Hematol. Educ. Program 2006:19–23 [Google Scholar]
  231. Lu PL, Hsiao HH, Tsai JJ, Chen TC, Feng MC. 231.  et al. 2005. Dengue virus-associated hemophagocytic syndrome and dyserythropoiesis: a case report. Kaohsiung J. Med. Sci. 21:34–39 [Google Scholar]
  232. Karai I, Fukumoto K, Horiguchi S. 232.  1982. Relationships between osmotic fragility of red blood cells and various hematologic data in workers exposed to lead. Int. Arch. Occup. Environ. Health 50:17–23 [Google Scholar]
  233. Sharma BK, Singhal PC, Chugh KS. 233.  1978. Intravascular haemolysis and acute renal failure following potassium dichromate poisoning. Postgrad. Med. J. 54:414–15 [Google Scholar]
  234. Biswas D, Banerjee M, Sen G, Das JK, Banerjee A. 234.  et al. 2008. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicol. Appl. Pharmacol. 230:57–66 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error