This autobiography covers the past 50 years beginning with the development of the concept of allosteric proteins and its application to pharmacological receptors. It continues with the identification of the nicotinic acetylcholine receptor, the discovery of its molecular organization, the structure of the acetylcholine-binding site and of the ion channel, and the demonstration of its allosteric transitions. The article then traces the origins of the concept of allosteric modulator and its consequences in pharmacology. It proceeds with the theory of selective stabilization of synapses and with experimental studies carried out on the contribution of the nicotinic receptor in the morphogenesis of the neuromuscular junction. The knowledge acquired with the nicotinic receptor is further exploited to reach higher levels of brain organization, and the contribution of nicotinic receptors to the action of nicotine on reward and cognition is explored, in particular, using a novel experimental strategy that combines nicotinic receptor genes knock-out and stereotaxic gene re-expression. Theoretical models of cognitive functions are proposed that link the molecular to the cognitive level. The report ends with a discussion on nicotinic receptors and the pharmacology of the future.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Changeux JP. 1.  1961. The feedback control mechanism of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harbor Symp. Quant. Biol. 26:313–18 [Google Scholar]
  2. Monod J, Jacob F. 1a.  1961. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harbor Symp. Quant. Biol. 26:389–401 [Google Scholar]
  3. Monod J, Changeux JP, Jacob F. 2.  1963. Allosteric proteins and cellular control systems. J. Mol. Biol. 6:306–29 [Google Scholar]
  4. Bertrand D, Gopalakrishnan M. 3.  2007. Allosteric modulation of nicotinic acetylcholine receptors. Biochem. Pharmacol. 74:1155–63 [Google Scholar]
  5. Schwartz TW, Holst B. 4.  2007. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: Where do they bind and how do they act?. Trends Pharmacol. Sci. 28:366–73 [Google Scholar]
  6. Conn PJ, Jones CK, Lindsley CW. 5.  2009. Subtype-selective allosteric modulators of mucarinic receptors for the treatment of CNS disorders. Trends Pharmacol. Sci. 30:148–55 [Google Scholar]
  7. Gerhart JC, Pardee AB. 6.  1962. The enzymology of control by feedback inhibition. J. Biol. Chem. 237:891–96 [Google Scholar]
  8. Changeux JP. Changeux JP. 7.  1964. On the allosteric properties of L-threonine deaminase. I. Methods of studying biosynthetic L-threonine deaminase. Bull. Soc. Chim. Biol. (Paris) 46:927–46; II. Kinetics of action of biosynthetic L-threonine deaminase with respect to the natural substrate and inhibitor. Bull. Soc. Chim. Biol. (Paris) 46:947–61; III. Interpretation of the inhibitory effect of L-isoleucine steric hindrance or allosteric effect. Bull. Soc. Chim. Biol. (Paris) 46:1151–73 1965. IV. The desensitization phenomenon. Bull. Soc. Chim. Biol. (Paris) 47:113–39; V. The allosteric transition. Bull. Soc. Chim. Biol. (Paris) 47:267–80; VI. General discussion. Bull. Soc. Chim. Biol. (Paris) 47:281–300 [Google Scholar]
  9. Monod J, Wyman J, Changeux JP. 8.  1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118 [Google Scholar]
  10. Changeux JP, Gerhart JC, Schachman HK. 9.  1968. Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits. Biochemistry 7:531–38 [Google Scholar]
  11. Rubin MM, Changeux JP. 10.  1966. On the nature of allosteric transitions: implications of non-exclusive ligand binding. J. Mol. Biol. 21:265–74 [Google Scholar]
  12. Changeux JP, Rubin MM. 11.  1968. Allosteric interactions in aspartate transcarbamylase. III. Interpretation of experimental data in terms of the model of Monod, Wyman, and Changeux. Biochemistry 7:553–61 [Google Scholar]
  13. Cui Q, Karplus M. 12.  2008. Allostery and cooperativity revisited. Protein Sci. 17:1295–307 [Google Scholar]
  14. Pauling L. 13.  1935. The oxygen equilibrium of hemoglobin and its structural interpretation. Proc. Natl. Acad. Sci. USA 21:186–91 [Google Scholar]
  15. Koshland DE Jr, Némethy G, Filmer D. 14.  1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–85 [Google Scholar]
  16. Perutz MF. 15.  1989. Mechanisms of cooperativity and allosteric regulation in proteins. Q. Rev. Biophys. 22:139–237 [Google Scholar]
  17. Eaton WA, Henry ER, Hofrichter J, Bettati S, Viappiani C, Mozzarelli A. 16.  2007. Evolution of allosteric models for hemoglobin. IUBMB Life. 59:586–99 [Google Scholar]
  18. Iwata S, Kamata K, Yoshida S, Minowa T, Ohta T. 17.  1994. T and R states in the crystals of bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control. Nat. Struct. Biol. 1:176–85 [Google Scholar]
  19. Velyvis A, Yang YR, Schachman HK, Kay LE. 18.  2007. A solution NMR study showing that active site ligands and nucleotides directly perturb the allosteric equilibrium in aspartate transcarbamoylase. Proc. Natl. Acad. Sci. USA 104:8815–20 [Google Scholar]
  20. Lange OF, Lakomek NA, Farès C, Schröder GF, Walter KF. 19.  et al. 2008. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–75 [Google Scholar]
  21. Changeux JP, Thiéry JP, Tung Y, Kittel C. 20.  1967. On the cooperativity of biological membranes. Proc. Natl. Acad. Sci. USA 57:335–41 [Google Scholar]
  22. Bray D, Levin MD, Morton-Firth CJ. 21.  1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88 [Google Scholar]
  23. Langley JN. 21a.  1905. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J. Physiol. 33:374–413 [Google Scholar]
  24. Chagas C. 22.  1959. Studies on the mechanism of curarization. Ann. N. Y. Acad. Sci. 81:345–57 [Google Scholar]
  25. Ehrenpreis S. 23.  1959. Interaction of curare and related substances with acetylcholine receptor-like protein. Science 129:1613–14 [Google Scholar]
  26. De Robertis E, Fiszer S, Soto EF. 24.  1967. Cholinergic binding capacity of proteolipids from isolated nerve-ending membranes. Science 158:928–29 [Google Scholar]
  27. Ehrenpreis S. 25.  1964. Acetylcholine and nerve activity. Nature 201:887–93 [Google Scholar]
  28. Briley MS, Changeux JP. 26.  1977. Isolation and purification of the nicotinic acetylcholine receptor and its functional reconstitution into a membrane environment. Int. Rev. Neurobiol. 20:31–63 [Google Scholar]
  29. Zupancic AO. 27.  1953. The mode of action of acetylcholine; a theory extended to a hypothesis on the mode of action of other biologically active substances. Acta Physiol. Scand. 29:63–71 [Google Scholar]
  30. Podleski TR. 28.  1967. Distinction between the active sites of acetylcholine-receptor and acetylcholinesterase. Proc. Natl. Acad. Sci. USA 58:268–73 [Google Scholar]
  31. Karlin A, Bartels E. 29.  1966. Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim. Biophys. Acta 126:525–35 [Google Scholar]
  32. Changeux JP. 30.  1966. Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol. Pharmacol. 2:369–92 [Google Scholar]
  33. Silman I, Sussman JL. 31.  2008. Acetylcholinesterase: How is structure related to function?. Chem. Biol. Interact. 175:3–10 [Google Scholar]
  34. Schoffeniels E, Nachmansohn D. 32.  1957. An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds. Biochim. Biophys. Acta 26:1–15 [Google Scholar]
  35. Changeux JP, Podleski TR. 33.  1968. On the excitability and cooperativity of the electroplax membrane. Proc. Natl. Acad. Sci. USA 59:944–50 [Google Scholar]
  36. Changeux JP, Podleski TR, Wofsy L. 34.  1967. Affinity labeling of the acetylcholine-receptor. Proc. Natl. Acad. Sci. USA 58:2063–70 [Google Scholar]
  37. Karlin A, Winnik M. 35.  1968. Reduction and specific alkylation of the receptor for acetylcholine. Proc. Natl. Acad. Sci. USA 60:668–74 [Google Scholar]
  38. Changeux JP, Gautron J, Israel M, Podleski TR. 36.  1969. Separation of excitable membranes from the electric organ of Electrophorus electricus. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 269:1788–91 [Google Scholar]
  39. Kasai M, Changeux JP. 37.  1971. In vitro excitation of purified membrane fragments by cholinergic agonists. J. Memb. Biol. 6:1–234–5758–8081–88 [Google Scholar]
  40. Gilbert W, Müller-Hill B. 38.  1966. Isolation of the lac repressor. Proc. Natl. Acad. Sci. USA 56:1891–98 [Google Scholar]
  41. Changeux JP, Kasai M, Huchet M, Meunier JC. 39.  1970. Extraction from electric tissue of gymnotus of a protein presenting several typical properties characteristic of the physiological receptor of acetylcholine. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 270:2864–67 [Google Scholar]
  42. Pert CB, Snyder SH. 40.  1973. Opiate receptor: demonstration in nervous tissue. Science 179:1011–14 [Google Scholar]
  43. Terenius L. 41.  1973. Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol. Toxicol. (Copenh) 32:317–20 [Google Scholar]
  44. Snyder SH. 42.  2004. Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology 47:Suppl 1274–85 [Google Scholar]
  45. Lee CY, Chang CC. 43.  1966. Modes of actions of purified toxins from elapid venoms on neuromuscular transmission. Mem. Inst. Butantan. 33:555–72 [Google Scholar]
  46. Changeux JP, Kasai M, Lee CY. 44.  1970. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl. Acad. Sci. USA 67:1241–47 [Google Scholar]
  47. Meunier JC, Huchet M, Boquet P, Changeux JP. 45.  1971. Separation of the receptor protein of acetylcholine and acetylcholinesterase. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 272:117–20 [Google Scholar]
  48. Karlsson E, Heilbronn E, Widlund L. 46.  1972. Isolation of the nicotinic acetylcholine receptor by biospecific chromatography on insolubilized Naja naja neurotoxin. FEBS Lett. 28:107–11 [Google Scholar]
  49. Klett RP, Fulpius BW, Cooper D, Smith M, Reich E, Possani LD. 47.  1973. The acetylcholine receptor. I. Purification and characterization of a macromolecule isolated from Electrophorus electricus. J. Biol. Chem. 248:6841–53 [Google Scholar]
  50. Lindstrom J, Patrick J. 48.  1974. Purification of the acetylcholine receptor by affinity chromatography. Synaptic Transmission and Neuronal Interaction MVL Bennett 191–216 New York: Raven Press [Google Scholar]
  51. Olsen R, Meunier JC, Changeux JP. 49.  1972. Progress in purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography. FEBS Lett. 28:96–100 [Google Scholar]
  52. Meunier JC, Sealock R, Olsen R, Changeux JP. 50.  1974. Purification and properties of the cholinergic receptor protein from Electrophorus electricus electroplax. Eur. J. Biochem. 45:371–94 [Google Scholar]
  53. Schmidt J, Raftery MA. 51.  1972. Use of affinity chromatography for acetylcholine receptor purification. Biochem. Biophys. Res. Commun. 49:572–78 [Google Scholar]
  54. Miledi R, Molinoff P, Potter LT. 52.  1971. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature 229:554–57 [Google Scholar]
  55. Cohen JB, Weber M, Huchet M, Changeux JP. 53.  1972. Purification from Torpedo marmorata electric tissue of membrane fragments particularly rich in cholinergic receptor. FEBS. Lett. 26:43–47 [Google Scholar]
  56. Duguid JR, Raftery MA. 54.  1973. Fractionation and partial characterization of membrane particles from Torpedo californica electroplax. Biochemistry 12:3593–97 [Google Scholar]
  57. Schiebler W, Hucho F. 55.  1978. Membranes rich in acetylcholine receptor: characterization and reconstitution to excitable membranes from exogenous lipids. Eur. J. Biochem. 85:55–63 [Google Scholar]
  58. Sobel A, Weber M, Changeux JP. 56.  1977. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur. J. Biochem. 80:215–24 [Google Scholar]
  59. Cohen JB, Changeux JP. 57.  1973. Interaction of a fluorescent ligand with membrane-bound cholinergic receptor from Torpedo marmorata. Biochemistry 12:4855–64 [Google Scholar]
  60. Grünhagen H, Changeux JP. 58.  1975. Structural transitions of the Torpedo cholinergic receptor in its membrane state as demonstrated by a fluorescent local anesthetic: quinacrine. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 281:1047–50 [Google Scholar]
  61. Brisson AD, Scandella CJ, Bienvenue A, Devaux P, Cohen JB, Changeux JP. 59.  1975. Interaction of a spin-labeled long chain acylcholine with the cholinergic receptor protein in its membrane environment. Proc. Natl. Acad. Sci. USA 72:1087–91 [Google Scholar]
  62. Dupont Y, Cohen JB, Changeux JP. 60.  1974. X-ray diffraction study of membrane fragments rich in acetylcholine receptor protein prepared from the electric organ of Torpedo marmorata. FEBS Lett. 40:130–33 [Google Scholar]
  63. Cartaud J, Benedetti L, Cohen JB, Meunier JC, Changeux JP. 61.  1973. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 33:109–13 [Google Scholar]
  64. Ross MJ, Klymkowsky MW, Agard DA, Stroud RM. 62.  1977. Structural studies of a membrane-bound acetylcholine receptor from Torpedo californica. J. Mol. Biol. 116:635–59 [Google Scholar]
  65. Brisson A, Unwin PN. 63.  1985. Quaternary structure of the acetylcholine receptor. Nature 315:474–77 [Google Scholar]
  66. Unwin N. 64.  2000. The Croonian Lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355:1813–29 [Google Scholar]
  67. Changeux JP. 65.  1969. Remarks on the symmetry and cooperative properties of biological membranes. Symmetry and Functions in Biological Systems at the Macromolecular Level A Engström, B Strandberg, Nobel Symposium II. John Wiley and Sons Inc. New York 235–56
  68. Hucho F, Changeux JP. 66.  1973. Molecular weight and quaternary structure of the cholinergic receptor protein extracted by detergents from Electrophorus electricus electric tissue. FEBS Lett. 38:11–15 [Google Scholar]
  69. Weill CL, McNamee MG, Karlin A. 67.  1974. Affinity-labeling of purified acetylcholine receptor from Torpedo californica. Biochem. Biophys. Res. Commun. 61:997–1003 [Google Scholar]
  70. Devillers-Thiery A, Changeux JP, Paroutaud P, Strosberg AD. 68.  1979. The amino-terminal sequence of the 40000 molecular weight subunit of the acetylcholine receptor protein from Torpedo marmorata. FEBS Lett. 104:99–105 [Google Scholar]
  71. Raftery MA, Hunkapiller MW, Strader CD, Hood LE. 69.  1980. Acetylcholine receptor: complex of homologous subunits. Science 208:1454–56 [Google Scholar]
  72. Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y. 70.  et al. 1982. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–97 [Google Scholar]
  73. Ballivet M, Patrick J, Lee J, Heinemann S. 71.  1982. Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 79:4466–70 [Google Scholar]
  74. Giraudat J, Devillers-Thiéry A, Auffray C, Rougeon F, Changeux JP. 72.  1982. Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor. EMBO J. 1:713–17 [Google Scholar]
  75. Devillers-Thiéry A, Giraudat J, Bentaboulet M, Changeux JP. 73.  1983. Complete mRNA coding sequence of the acetylcholine binding alpha subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80:2067–71 [Google Scholar]
  76. Kao PN, Dwork AJ, Kaldany RR, Silver ML, Wideman J. 74.  et al. 1984. Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem. 259:11662–65 [Google Scholar]
  77. Oswald RE, Changeux JP. 75.  1982. Crosslinking of alpha-bungarotoxin to the acetylcholine receptor from Torpedo marmorata by UV light irradiation. FEBS Lett. 139:225–29 [Google Scholar]
  78. Dennis M, Giraudat J, Kotzyba-Hibert F, Goeldner M, Hirth C. 76.  et al. 1988. Amino acids of the Torpedo marmorata acetylcholine receptor subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27:2346–57 [Google Scholar]
  79. Galzi JL, Revah F, Black D, Goeldner M, Hirth C, Changeux JP. 77.  1990. Identification of a novel amino acid α-Tyr 93 within the active site of the acetylcholine receptor by photoaffinity labeling: additional evidence for a three-loop model of the acetylcholine binding site. J. Biol. Chem. 265:10430–37 [Google Scholar]
  80. Corringer PJ, Bertrand S, Bohler S, Edelstein SJ, Changeux JP, Bertrand D. 78.  1998. Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J. Neurosci. 18:648–57 [Google Scholar]
  81. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J. 79.  et al. 2001. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–76 [Google Scholar]
  82. Corringer PJ, Le Novère N, Changeux JP. 80.  2000. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40:431–58 [Google Scholar]
  83. Changeux JP, Taly A. 81.  2008. Nicotinic receptors, allosteric proteins and medicine. Trends Mol. Med. 14:93–102 [Google Scholar]
  84. Sixma TK. 82.  2007. Nicotinic receptor structure emerging slowly. Nat. Neurosci. 10:937–38 [Google Scholar]
  85. Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y. 83.  2005. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J. 24:3635–46 [Google Scholar]
  86. Ihara M, Okajima T, Yamashita A, Oda T, Hirata K. 84.  et al. 2008. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert. Neurosci. 8:71–81 [Google Scholar]
  87. Gotti C, Zoli M, Clementi F. 85.  2006. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27:482–91 [Google Scholar]
  88. Olsen RW, Sieghart W. 86.  2008. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology and function. Update. Pharmacol. Rev. 60:24–60 [Google Scholar]
  89. Betz H, Laube B. 87.  2006. Glycine receptors: recent insights into their structural organization and functional diversity. J. Neurochem. 97:1600–10 [Google Scholar]
  90. Barnes NM, Hales TG, Lummis SC, Peters JA. 88.  2009. The 5-HT(3) receptor—the relationship between structure and function. Neuropharmacology 56:273–84 [Google Scholar]
  91. Changeux JP, Edelstein SJ. 89.  2005. Nicotinic Acetylcholine Receptors: from Molecular Biology to Cognition New York: Odile Jacob296
  92. Weber M, Changeux JP. 90.  1974. Binding of Naja nigricollis 3H-alpha-toxin to membrane fragments from Eletrophorus and Torpedo electric organs. 3. Effect of local anaesthetics on the binding of the tritiated-neurotoxin. Mol. Pharmacol. 10:35–40 [Google Scholar]
  93. Cohen JB, Weber M, Changeux JP. 91.  1974. Effects of local anesthetics and calcium on the interaction of cholinergic ligands with the nicotinic receptor protein from Torpedo marmorata. Mol. Pharmacol. 10:904–32 [Google Scholar]
  94. Sobel A, Weber M, Changeux JP. 92.  1977. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur. J. Biochem. 80:215–24 [Google Scholar]
  95. Oswald RE, Changeux JP. 93.  1981. Selective labeling of the delta-subunit of the acetylcholine receptor by a covalent local anesthetic. Biochemistry 20:7166–74 [Google Scholar]
  96. Oswald R, Changeux JP. 94.  1981. Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor from Torpedo marmorata. Proc. Natl. Acad. Sci. USA 78:3925–29 [Google Scholar]
  97. Heidmann T, Oswald R, Changeux JP. 95.  1982. The high affinity binding site for chlorpromazine is present only as a single copy per cholinergic receptor molecule and is shared by four polypeptide chains. C. R. Seances Acad. Sci. III 295:345–49 [Google Scholar]
  98. Heidmann T, Bernhardt J, Neumann E, Changeux JP. 96.  1983. Rapid kinetics of agonist binding and permeability response analyzed in parallel on acetylcholine receptor-rich membranes from Torpedo marmorata. Biochemistry 22:5452–59 [Google Scholar]
  99. Heidmann T, Changeux JP. 97.  1984. Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations. Proc. Natl. Acad. Sci. USA 81:1897–901 [Google Scholar]
  100. Heidmann T, Changeux JP. 98.  1986. Characterization of the transient agonist-triggered state of the acetylcholine receptor rapidly labeled by the noncompetitive blocker [3H]chlorpromazine: additional evidence for the open channel conformation. Biochemistry 25:6109–13 [Google Scholar]
  101. Giraudat J, Dennis M, Heidmann T, Chang JY, Changeux JP. 99.  1986. Structure of the high affinity site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the delta subunit is labeled by [3H]-chlorpromazine. Proc. Natl. Acad. Sci. USA 83:2719–23 [Google Scholar]
  102. Oberthür W, Muhn P, Baumann H, Lottspeich F, Wittmann-Liebold B, Hucho F. 99a.  1986. The reaction site of a noncompetitive antagonist in the delta subunit of the nicotinic acetylcholine receptor. EMBO J. 5:1815–19 [Google Scholar]
  103. Giraudat J, Dennis M, Heidmann T, Haumont PY, Lederer F, Changeux JP. 100.  1987. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H] chlorpromazine labels homologous residues in the beta and delta chains. Biochemistry 26:2410–18 [Google Scholar]
  104. Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP. 101.  1990. The noncompetitive blocker [3H]-chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of the M2 segments and the structure of the ion channel. Proc. Natl. Acad. Sci. USA 87:4675–79 [Google Scholar]
  105. Barnard EA, Miledi R, Sumikawa K. 102.  1982. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond. B Biol. Sci. 215:241–46 [Google Scholar]
  106. Imoto K, Methfessel C, Sakmann B, Mishina M, Mori Y. 103.  et al. 1986. Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324:670–74 [Google Scholar]
  107. Imoto K, Busch C, Sakmann B, Mishina M, Konno T. 104.  et al. 1988. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–48 [Google Scholar]
  108. Leonard RJ, Labarca CG, Charnet P, Davidson N, Lester HA. 105.  1988. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242:1578–81 [Google Scholar]
  109. Galzi JL, Devillers-Thiery A, Hussy N, Bertrand S, Changeux JP, Bertrand D. 106.  1992. Mutations in the ion channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–5 [Google Scholar]
  110. Corringer PJ, Bertrand S, Galzi JL, Devillers-Thiéry A, Changeux JP, Bertrand D. 107.  1999. Mutational analysis of the charge selectivity filter of the alpha7 nicotinic acetylcholine receptor. Neuron 22:831–43 [Google Scholar]
  111. Wotring VE, Weiss DS. 108.  2008. Charge scan reveals an extended region at the intracellular end of the GABA receptor pore that can influence ion selectivity. J. Gen. Physiol. 131:87–97 [Google Scholar]
  112. Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. 109.  2004. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol. 86:161–204 [Google Scholar]
  113. Sunesen M, Prado de Carvalho L, Dufresne V, Grailhe R, Savatier-Duclert N. 110.  et al. 2006. Mechanism of Cl selection by a GluCl receptor revealed through mutations in the selectivity filter. J. Biol. Chem. 281:14875–81 [Google Scholar]
  114. Gunthorpe MJ, Lummis SC. 111.  2001. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem. 276:10977–83 [Google Scholar]
  115. Eiselé JL, Bertrand S, Galzi JL, Devillers-Thiéry A, Changeux JP, Bertrand D. 112.  1993. Chimeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366:479–83 [Google Scholar]
  116. Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP. 113.  et al. 2009. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–14 [Google Scholar]
  117. Hilf RJ, Dutzler R. 114.  2009. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457:115–18 [Google Scholar]
  118. Valeur B, Patrick J, Podleski T, Monnerie L, Changeux JP. 115.  1970. Perfecting an apparatus allowing to measure changes of extrinsic fluorescence intensity associated with electric excitation of electroplaque isolated from gymnotus. C. R. Acad. Sci. D 270:2583–86 [Google Scholar]
  119. Patrick J, Valeur B, Monnerie L, Changeux JP. 116.  1971. Changes in extrinsic fluorescence intensity of the electroplax membrane during electrical excitation. J. Memb. Biol. 5:102–20 [Google Scholar]
  120. Kasai M, Changeux JP, Monnerie L. 117.  1969. In vitro interaction of 1-anilino 8 naphthalene sulfonate with excitable membranes isolated from the electric organ of Electrophorus electricus. Biochem. Biophys. Res. Commun. 36:420–27 [Google Scholar]
  121. Wahl P, Kasai M, Changeux JP. 118.  1971. A study on the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy. Eur. J. Biochem. 18:332–41 [Google Scholar]
  122. Katz B, Thesleff S. 119.  1957. A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. 138:63–80 [Google Scholar]
  123. Weber M, David-Pfeuty MT, Changeux JP. 120.  1975. Regulation of binding properties of the nicotinic receptor protein by cholinergic ligands in membrane fragments from Torpedo marmorata. Proc. Natl. Acad. Sci. USA 72:3443–47 [Google Scholar]
  124. Colquhoun D, Rang HP. 121.  1976. Effects of inhibitors of the binding of iodinated alpha-bungarotoxin to acetylcholine receptors in rat muscle. Mol. Pharmacol. 12:519–35 [Google Scholar]
  125. Weiland G, Georgia B, Lappi S, Chignell CF, Taylor P. 122.  1977. Kinetics of agonist-mediated transitions in state of the cholinergic receptor. J. Biol. Chem. 252:7648–56 [Google Scholar]
  126. Grünhagen HH, Changeux JP. 123.  1976. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. IV. Quinacrine: a fluorescent probe for the conformational transitions of the cholinergic receptor protein in its membrane bound state. J. Mol. Biol. 106:497–516. V. Qualitative correlation between pharmacological effects and equilibration processes of the cholinergic receptor protein as revealed by the structural probe quinacrine. J. Mol. Biol. 106:517–35 [Google Scholar]
  127. Grünhagen HH, Iwatsubo M, Changeux JP. 124.  1977. Fast kinetic studies on the interaction of cholinergic agonists with the membrane-bound acetylcholine receptor from Torpedo marmorata as revealed by quinacrine fluorescence. Eur. J. Biochem. 80:225–42 [Google Scholar]
  128. Heidmann T, Changeux JP. 125.  1979. Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. Eur. J. Biochem. 94:255–79; Id. Fast kinetic studies on the allosteric interactions between acetylcholine receptor and local anesthetic binding sites. Eur. J. Biochem. 94:281–96 [Google Scholar]
  129. Heidmann T, Changeux JP. 126.  1980. Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata in the millisecond time range: resolution of an “intermediate” conformational transition and evidence for positive cooperative effects. Biochem. Biophys. Res. Comm. 97:889–96 [Google Scholar]
  130. Jackson MB. 127.  1984. Spontaneous openings of the acetylcholine receptor channel. Proc. Natl. Acad. Sci. USA 81:3901–4 [Google Scholar]
  131. Purohit P, Auerbach A. 128.  2009. Unliganded gating of acetylcholine receptor channels. Proc. Natl. Acad. Sci. USA 106:115–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error