1932

Abstract

Modulation of fast neurotransmission by monoamines is critically involved in numerous physiological functions and pathological conditions. Plasma membrane monoamine transporters provide one of the most efficient mechanisms controlling functional extracellular monoamine concentrations. These transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET), which are expressed selectively on the corresponding neurons, are established targets of many psychostimulants, antidepressants, and neurotoxins. Recently, genetic animal models with targeted disruption of these transporters have become available. These mice have provided opportunities to investigate the functional importance of transporters in homeostatic control of monoaminergic transmission and to evaluate, in an in vivo model system, their roles in physiology and pathology. The use of these mice as test subjects has been helpful in resolving several important issues on specificity and mechanisms of action of certain pharmacological agents. In the present review, we summarize recent advances in understanding the physiology and pharmacology of monoamine transporters gained in mice with targeted genetic deletion of DAT, SERT, and NET.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.pharmtox.43.050802.112309
2003-04-01
2024-06-22
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.pharmtox.43.050802.112309
Loading
/content/journals/10.1146/annurev.pharmtox.43.050802.112309
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error